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Abstract 

The goals of theoretical crystallography may be sum- 
marized as follows: (1) predict the stoichiometry of 
the stable compounds; (2) predict the bond topology 
(i.e. the approximate atomic arrangement) of the 
stable compounds; (3) given the bond topology, cal- 
culate accurate bond lengths and angles (i.e. accurate 
atomic coordinates and cell dimensions); (4) given 
accurate atomic coordinates, calculate accurate static 
and dynamic properties of a crystal. For oxides and 
oxysalts, we are now quite successful at (3) and (4), 
but fail miserably at (1) and (2). The current situa- 
tion in the first two areas is briefly reviewed, prior to 
discussing in some detail an approach to topological 
aspects of structure in oxide and oxysalt crystals. The 
structure of a molecule or crystal may be represented 
by a graph, in which the vertices represent orbitals, 
atoms or groups of atoms, and the edges represent 
orbital interactions or chemical bonds. The topologi- 
cal characteristics of the bond network are contained 
in the (weighted) adjacency matrix of the graph and 
the corresponding eigenvalues constitute the spec- 
trum of the graph. Simple graph theory arguments 
show that molecular (fundamental) building blocks 
are actually orbital (or energetic) building blocks, 
showing that there is an energetic basis for the use of 
fundamental building blocks in the representation 
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and hierarchical analysis of complex structures. The 
electronic energy density of states may be derived by 
inverting the collection of moments of the energy, 
which may be evaluated directly from the topology 
of the bond network. Of particular importance in 
infinite structures is the observation that the energy 
difference between two structures is primarily depen- 
dent on the first few disparate moments of their 
respective electron energy density of states. Putting 
this in structural terms, the important energetic 
differences between structures involve differences in 
coordination number and local polyhedral connec- 
tivity. This supports the general idea that structures 
may be hierarchically ordered according to the 
polymerization of coordination polyhedra with 
higher bond valences. It is shown that Pauling's rules 
may be intuitively related to bond topology and its 
effect on the lower-order moments of the electronic 
energy density of states. It is also concluded that 
arguments of ionicity and/or covalency are second- 
ary to the overriding influence of bond topology on 
the stability and energetics of structure. Bond- 
valence theory is reviewed in some detail. It may be 
considered as a simple form of molecular-orbital 
theory, parameterized via interatomic distance rather 
than electronegativity or ionization potential, and 
arbitrarily scaled via the valence-sum rule. Combina- 
tion of bond-valence theory with bond topology/ 
energetic considerations leads to a very simple way 
of expressing complex structures. The structural unit 
is a strongly bonded, usually anionic, polyhedral 
array whose charge is balanced by large low-valence 
interstitial cations. This gives a simple binary repre- 
sentation of even the most complicated structure; 
moreover, we can calculate the Lewis basicity and 
acidity of the two components and examine their 
interaction via the valence-matching rule. This 
enables us to examine several aspects of structural 
chemistry that have hitherto been intractable. The 
principal idea behind this work is to develop a 
coherent approach that is reasonably transparent to 
chemical and physical intuition, and that can be 
simply applied to complex crystals. 
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Introduction 

Crystallography has been an area of scientific 
endeavour for at least 350 years. Until the beginning 
of this century, attention was focused on understand- 
ing the morphology, properties and constitution of 
crystalline materials, together with some inspired 
speculation as to their internal structure. The dis- 
covery of X-ray diffraction in 1912 heralded a major 
renaissance in crystallography with the demon- 
stration that the arrangements of atoms in (trans- 
lationally symmetric) solids could be derived. The 
major thrust initiated at this time has continued to 
the present day, as nature has provided a spectrum 
of crystalline materials of increasing complexity that 
continue to challenge our experimental techniques. 
However, the success of these experimental tech- 
niques has led to the identification of crystallography 
with the solution and refinement of crystal struc- 
tures, to the neglect of theoretical approaches aimed 
at understanding the atomic arrangements observed 
in crystals and their physical and chemical proper- 
ties. Although traditionally within the purview of 
crystallography, such work is now predominantly the 
domain of solid-state chemists and physicists, much 
to the detriment of crystallography itself. We still 
have not progressed very far towards what must be 
considered as the fundamental goal of crystallo- 
graphy: to predict the structure and properties of a 
material from a knowledge of its chemical composi- 
tion. Failure to realize this goal is one of the con- 
tinuing scandals in the physical sciences (Maddox, 
1988), particularly as there is probably more data 
available for atomic arrangements in crystals than 
there is in any other area of the physical sciences. 
The availability of data and the importance of the 
question make this one of the most pressing scientific 
problems, and I hope that the following considera- 
tions will encourage further effort in this area. 

In this article I will focus on oxides and oxysalts in 
which there are bonds only between unlike atoms; 
polycompounds are thus excluded. I use the terms 
'cation' and 'anion' to denote atoms that are of lesser 
or greater electronegativity, respectively; these terms 
carry no implications as to models of chemical 
bonding. 

Theoretical crystallography 

We may summarize the goals of theoretical crystal- 
lography in the following way: Given a chemical 
system, we wish to 

(1) predict the stoichiometry of the stable com- 
pounds; 

(2) predict the bond topology (i.e. the approximate 
atomic arrangement) of these compounds; 

(3) given the bond topology, calculate the accurate 
bond lengths and angles (i.e. accurate atomic coordi- 
nates); 

(4) given accurate atomic coordinates, calculate 
accurate static and dynamic properties of the crystal. 

So how successful are we in these matters? The 
answer to this obviously depends on the complexity 
of the materials in which we are interested: we can 
optimize structure and calculate properties far more 
effectively for a simple oxide or metal than we can 
for a protein. Here, I am concerned with oxides and 
oxysalts, perhaps the most tractable group of materi- 
als with regard to these problems. However, despite 
this relative tractability, we are successful only in two 
of the above four areas. Given an approximate 
atomic arrangement, we can often calculate atomic 
positions and physical properties quite well. There 
are two principal approaches to this problem: (1) 
potential methods, which recognize the atom as the 
smallest unit; (2) electronic structure methods, which 
recognize the electron as the smallest 'unit' and 
attempt (at some level of approximation) to solve the 
Schrrdinger equation for the system. 

The first potential model for crystal structure was 
developed in the 1920s, primarily by Max Born, with 
input from Madelung (1918), and involved a simple 
two-body interatomic potential (Born & Landr, 
1918). Deviations from the Cauchy relationship 
show that a central two-body potential is not suffi- 
cient, and current approaches usually include addi- 
tional noncentral potentials of some form. The 
Modified Electron Gas (MEG) model (Gordon & 
Kim, 1972) was introduced for nonempirical deter- 
mination of repulsive parameters. Detailed develop- 
ments along these lines are summarized by Burnham 
(1990) and Catlow & Price (1990). Such models have 
improved out of all recognition in the last 20 years. 
They are now capable of predicting structural details, 
phonon-dispersion relations, elastic properties, ther- 
modynamic data and (most impressively) isotope 
fractionation factors in such anisodesmic structures 
as calcite (Dove, Winkler, Leslie, Harris & Salje, 
1992) and diopside (Patel, Price & Mendelssohn, 
1991). 

Electron methods initially involved the use of 
qualitative molecular-orbital arguments to rational- 
ize observed stereochemistry in molecules in crystals. 
The success of this approach led to quantitative 
molecular-orbital calculations on molecular frag- 
ments of structures, the fragment being embedded in 
a field of some sort to simulate the effect of the 
crystal (Finnis, Paxton, Pettifor, Sutton & Ohta, 
1988), and calculations of gradually increasing soph- 
istication (see Tossell & Vaughan, 1992) have 
significantly increased our understanding of stereo- 
chemical variations in crystals. More recently, 
greatly increased computation power has allowed the 
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generalization of ab &itio methods to periodic struc- 
tures. This can be done either by formulating the 
molecular orbitals as Bloch functions (Pisani, 1987) 
or by using Local Density Approximation (LDA) 
methods (Srivastava & Weaire, 1987). These have 
been quite successful in calculating elastic constants, 
equations of state and the electronic structure of 
reasonably complicated oxides (Dovesi, Pisani, 
Roetti & Silvi, 1987). 

The success of these methods in addressing prob- 
lems (3) and (4) contrasts with the lack of progress in 
problems (1) and (2), prediction of the stoichiometry 
and approximate structure of stable compounds. The 
rest of this work will consequently focus on the latter 
areas, in which key-punching is not yet an adequate 
substitute for arm-waving. 

Prediction of stoichiometry of stable compounds 

There should be strong connections between the 
stoichiometry of a stable compound and aspects of 
its crystal and electronic structure. The one rigorous 
rule is the principle of electroneutrality: the sum of 
the formal charges of all the ions in a crystal is zero. 
However, apart from this one constraint, there have 
been few additional connections between stoichiom- 
etry and structural stability; indeed, there has been 
little general work in this area. 

Dent Glasser (1979) has considered the reasons 
why many topologically possible silicate structures 
do not exist. She shows how the topological charac- 
teristics of polymerized silicate anions are related to 
the Lewis basicity of the anion group, and are a 
function of the field strength of the cation(s) in the 
structure. In addition, Dent Glasser (1979) proposes 
that the 'constitutional formulae' of hydrates are 
such as to minimize the basicity differences between 
the constituent O atoms, and that Si--O---Si link- 
ages are more stable than protonated groups or 
silanol groups of low basicity. It is notable that these 
were the first significant ideas to address the consti- 
tution of hydrated structures, and are similar to the 
ideas of bond-valence theory (Brown, 1981). 

The idea of coordination number has been a very 
fertile one in crystal chemistry. We can think of a 
crystal structure as a network of chemical bonds with 
a cation at one end of each bond and an anion at the 
other. This means that in a chemical compound 
[mlMx[n]q~y (where t"lM is a cation of coordination 
number m, and t"l~b is an anion of coordination 
number n) 

m x =  ny. (1) 

O'Keeffe & Hyde (1984) use this simple relationship 
to make some fairly 'strong' observations on coordi- 
nation numbers, stoichiometry and valence state in 
simple compounds. Thus, such compounds as 

Na10Co409 and K2NiO2 (Hoppe, 1981) are stabilized 
by planar three-coordinate Na and linear two- 
coordinate Ni, respectively. Similarly, O'Keeffe & 
Hyde (1984) point out that unusually high oxidation 
states (e.g. Mn v+ in KMnO4 and Ni 3+ in NasNiO4) 
are stabilized in ternary metal oxides by decreased 
cation/anion ratios. 

There needs to be much more work done along 
these lines. It is only by considering a very broad 
range of materials that any rules governing the 
occurrence of stable stoichiometries will come to 
light. 

Prediction of approximate atomic arrangements 

This is an area in which we fail almost completely. 
We cannot a priori predict the structure of  even the 
simplest crystal; NaC1 and MgO remain beyond our 
grasp. I have stated this in the most uncompromising 
way in order to emphasize both the fundamental 
nature of the problem and our failure to come to 
grips with it. Many scientists have not even recog- 
nized that the problem is there, and yet it must be 
the most fundamental problem in crystallography; it 
deserves more attention. 

Having made this 'political statement', it must be 
said that things are not quite as bad as I have 
suggested. Within various restricted groups of 
materials, we can make some predictions based on 
either an analogy with other materials or via topo- 
logical approaches that operate within (usually very 
restrictive) boundary conditions. 

Structural mapp&g 

We can predict structural arrangements by ana- 
logy with other known structures: thus, KC1 has the 
same relative atomic arrangement as NaC1. The idea 
of different compounds being isostructural eventually 
developed into the method of structural mapping, in 
which crystals with the same stoichiometry could be 
separated into fields of different structure type by 
sorting on a small number of (usually) atomic 
parameters. Different types of atomic radii have been 
used extensively for this sort of work with varying 
degrees of success. 

Like many important ideas in crystal chemistry, 
structural mapping was first used by Goldschmidt 
(1928, 1954). In stoichiometrically simple systems 
(e.g. Axd~y, AxByd~z, where A and B are cations and ~b 
are anions), a plot of atomic radii of one species (e.g. 
A) versus the radii of another (e.g. d~) leads to a 
two-dimensional map in which different structure 
types tend to form disjoint fields. The simple case of 
A~b octet compounds is shown in Fig. 1. As is 
apparent, the method does a reasonable job of sort- 
ing out the four principal structure types of this 
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group, but fails for seven of the 99 compounds 
plotted. Also shown on Fig. 1 are the boundaries 
predicted by the hard-sphere radius-ratio model 
(Rule 1 of Pauling, 1929); this approach fails to 
produce an adequate sorting. This result is quite 
interesting. The use of radii for structural mapping 
suggests that structural control is dominated by 
packing considerations. On the other hand, the fail- 
ure of the hard-sphere model to predict the position 
of field boundaries on such plots suggests that a 
'soft-sphere' model should be more effective, as also 
implied by more recent attempts to predict coordina- 
tion numbers in inorganic structures (Brown, 1988). 
Significant use has been made of such structural 
maps (Shannon & Prewitt, 1970; Muller & Roy, 
1974), but their main utility has been to guide syn- 
thesis experiments rather than to explore the reasons 
for specific structure stabilities. Other atomic param- 
eters have not been as widely used, but Phillips 
(1970, 1973) sorted the AB-octet compounds into 
octahedrally coordinated and tetrahedrally coordi- 

nated structures on the basis of two parameters 
representing the covalent (E~) and ionic (C) parts of 
the average energy gap (Fig. 2). 

Theoretical indices have also been produced and 
achieve a more successful sorting of simple structure 
types than the traditional empirical radii. Pseudo- 
potential radii (Simons & Bloch, 1973; Cohen,1981; 
Zunger & Cohen, 1978, 1979; Bloch & Schatteman, 
1981) have been quite effective in this regard. The 
indices R~ B and R ~  B (e.g. Zunger, 1981" Burdett, 
Price & Price, 1981) are defined as R~ 8 = I(r~ + r ~  

= A - r ~ l  + - ( r ~ + r ~ l = l r a - r ~ l  and R= aB Ir~, 
A A I r ~ - r ~ = l r a = + r ~ l ,  where r., and r?  are the s- 

A and B and p-orbital radii for atom .4. The radii r , ,  r~ 
sort the .4B-octet structures (Fig. 3) significantly 
better than the empirical radii (Fig. 1). As shown by 
Burdett, Price & Price (1981), these radii are quite 
good at sorting even quite subtle effects such as 
inverse versus normal spinels. 

Despite the success of structural mapping in sort- 
ing structure types as a function of properties of their 
constituent atomic species, it is necessary to 
emphasize that it does not predict the structure of a 
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Fig. 1. Structural map for 99 Art-octet compounds using the radii 

(corresponding to the observed coordination number) from 
Shannon (1976); • = NaC1 structure-type; [] = CsCI structure- 
type; V = ZnS structure-type; A = ZnO structure-type. The 
solid lines show the field boundaries according to the (hard- 
sphere) radius-ratio rules; the broken lines best sort the data 
into four-, six- and eight-coordination fields; after Burdett, Price 
& Price (1981). 
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Fig. 2. Structural map for four-coordination and six-coordination 
A$ compounds using the covalent (Eh) and ionic (C) parts of 
the average energy gap; legend as in Fig. 1, after Phillips (1970). 
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compound except by analogy with other known 
structures. Nevertheless, this approach should have 
much to contribute to our understanding of what 
features actually determine the relative stabilities of 
simple structure types. 

Nets and tetrahedral framework structures 

Two-dimensional (O'Keeffe & Hyde, 1980) and 
three-dimensional nets (Wells, 1956, 1970, 1977, 
1984) have long been used to describe crystal struc- 
tures. However, they have only seen extensive predic- 
tive use in the area of tetrahedral framework 
structures, particularly zeolites (Smith, 1988). Smith 
(1977) considered possible ways to link planar three- 
connected 63 nets in the third dimension to form 
four-connected three-dimensional nets as predictive 
models for tetrahedral framework structures (Fig. 4). 
The ensuing 15 years have seen extensive use of this 
approach for structure prediction (see review by 
Smith, 1988). This has been of particular importance 
with regard to zeolite structures. Synthetic zeolites 
and zeolitic materials are of considerable industrial 
importance as molecular sieves and catalysts, and 
knowledge of their structures is of great importance 
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Fig. 3. Structural map for the A4~-octet compounds using com- 

binations of pseudopotential atomic radii, rfl and r~ (see text), 
of Bloch & Schatteman (1981); legend as in Fig. l, after 
Burdett, Price & Price (1981 ). 

in optimization of their use. However, these synthetic 
materials are often only very fine-grained and normal 
single-crystal crystallographic techniques cannot be 
used (except where synchrotron facilities are availa- 
ble). Consequently, structure solution and refinement 
must proceed via a priori structure prediction (within 
the constraint of known cell dimensions) and Riet- 
veld structure refinement. 

Wood & Price (1992) have shown how to systema- 
tically generate two-dimensional three-connected 
plane nets. Combination with the stacking operators 
of Akporiaye & Price (1989) could result in a fairly 
automated generation of four-connected three- 
dimensional nets. This, of course, begs the next 
question of how do we select the physically realizable 
structures from the extremely large number of nets 
generated by this procedure. In this regard, Brunner 
& Meier (1989) have shown that zeolite and zeolite- 
type structures have a lower limit on the framework 
density (number of tetrahedral nodes [atoms] per 
1000 A3), a limit that is strongly dependent on the 
size of the smallest (tetrahedral) rings in the 
structure. 

These techniques have been quite successful in 
deriving structural details for quite complicated zeo- 
lite and zeolite-like structures. Of more general inter- 
est is the question: what specific aspects of a net 
make it the basis of a stable atomic arrangement 
relative to other nets that are not the basis of 
observed structures? The ability to systematically 
generate all possible four-connected three- 

CCCCCG SCCSC, C SCSCCC 

SSGGCG= SSCSSG 

SSSCSC SSSSCCI SSSSSS 

Fig. 4. Simple ways of adding a vertical linkage to each node of a 
63 net to give a four-connected three-dimensional net. The 
letters S and C denote whether a linkage is the same or different 
from adjacent linkages; after Smith (1977). 
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dimensional nets (subject to unit-ceU volume restric- 
tions to make the problem finite) indicates that a 
systematic approach to this question is now possible. 

Crystal structures as graphs 

The usual representations of a crystal structure are: 
(1) unit-cell and symmetry information, plus a 

table of atom coordinates; 
(2) a structure drawing that is usually based on 

assumptions as to which atoms are bonded together. 
Using (1), we can perform various structure-- 

property calculations, provided that we have suffi- 
cient computing power and appropriate potentials or 
wave functions; the problem is that this representa- 
tion offers little intuitive feel for the factors controll- 
ing structural stability. Using representation (2), we 
can make qualitative arguments (e.g. d la Pauling's 
rules), but we do not have a quantitative expression 
of the important features of a structure. Graph 
theory offers a potential solution to some of these 
problems. 

Fig. 5 shows four atoms; the lines represent chemi- 
cal bonds between these atoms. This representation, 
a set of points joined by lines, is the visual represen- 
tation of a graph. Formally, we may define a graph 
as a nonempty set of elements, V(G), called vertices, 
and a nonempty set of unordered pairs of these 
vertices, E(G), called edges. If we let the vertices of 
the graph represent atoms (as in Fig. 5) or groups of 
atoms, and the edges of the graph represent chemical 
bonds (or linkages between groups of atoms), then 
our graph may represent a molecule. We can intro- 
duce an algebraic representation of this graph in the 
form of a matrix (Fig. 5). Each column and row of 
the matrix is associated with a specific (labeled) 
vertex and the corresponding matrix entries denote 
whether or not two vertices are adjacent, that is 
joined by an edge. If the edges of the graph are 
weighted in some form such that the matrix elements 
denote this weighting, then this matrix is called the 

1 . , , 2  

2 

3 
v v 

4 3 4 

1 2 3 4  

- 1 0 1 

1 - 1 0 

0 1 - 1 

1 0 1 - 

GRAPH ADJACENCY MATRIX 

Fig. 5. A hypothetical molecule consisting of four atoms (O) 
joined by chemical bonds (--); as drawn, this is a labeled graph 
(left). An algebraic representation of this graph is the adjacency 
matrix (right). 

adjacency matrix. The adjacency matrix is thus a 
digital representation of the graph, which is in turn 
an analogue representation of the structure. The 
adjacency matrix does not preserve the geometrical 
features of the structure; information such as bond 
angles is lost. However, it does preserve information 
concerning the topological features of the bond net- 
work, with the possibility of carrying additional 
information concerning the strengths (or orders) of 
the chemical bonds. 

We have introduced a way of quantifying the 
topological aspects of the bond network of a group 
of atoms. It remains to determine the significance of 
this information. To do this, we now examine some 
of the connections that have recently developed 
between contemporary theories of chemical bonding 
and topological (or graphical) aspects of structure. I 
shall only sketch the outlines of the arguments, 
except where they serve to emphasize the equivalence 
or similarity between energetics of bonding and top- 
ological aspects of structure. Excellent reviews are 
given by Burdett (1980), Albright, Burdett & 
Whangbo (1985) and Hoffmann (1988). 

Topological aspects of molecular-orbital theory 

Molecules 

A reasonable first approach to the electronic struc- 
ture and properties of molecules is to consider a 
molecule as the sum of the electronic properties of its 
constituent atoms, as modified by the interaction 
between these atoms. The most straightforward way 
of doing this is to construct the molecular-orbital 
wavefunction from a Linear Combination of Atomic 
Orbitals (LCAO method) of the chemist and the 
tight-binding method of the physicist. These wave- 
functions are eigenstates of some (unspecified) effect- 
ive one-electron Hamiltonian, /_prr, that we may 
write as 

/-PrfCb = E~, (2) 

where E is the energy (eigenvalue) associated with ~b, 
and the LCAO molecular-orbital wavefunction is 
written as 

where {~oi} are the valence orbitals of the atoms of 
the molecule and ci is the contribution of a particular 
atomic orbital to a particular molecular orbital. 

The total electron energy of the state described by 
this wavefunction may be written as 

E= (f O*tPfftbd~-)/(f ~O*~bdr) 

= (( ~b I/-Pfrl ~b))/((~b/O)), (4) 

in which the integration is over all space. Substi- 
tution of (3) into (4) gives 
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E = (~. ~. cicj( ~oilI-l~rfl~oj))/(~. X c,~j(~>,l~oj)). (5) 
z j I j 

This equation may be simplified by the following 
substitutions and approximations: 

(a) (~pil~oj) is the overlap integral between atomic 
orbitals on different atoms; we will denote this as S U, 
and note that it is always _< 1; when i = j ,  (~iltPj) = 1 
for a normalized (atomic) basis set of orbitals. 

(b) We write (~pel/-/~frl~0t)= Hie; this is the Cou- 
lomb integral and represents the energy of an elec- 
tron in orbital ~o;. It can be approximated by the 
orbital ionization potential. 

(c) We write (~oi[nefrl~oj)=nij; it represents the 
interaction between orbitals ~oe and ~j and is the 
resonance integral. It can be approximated by the 
Wolfsberg-Helmholz relationship H e = KSo(nii  -t- 
Hjj)/2 (Gibbs, Hamil, Louisnathan, Bartell & Yow, 
1972). 

We may obtain the molecular-orbital energies 
from (5) via the variational theorem, minimizing the 
energy with respect to the coefficients ci. The most 
familiar form is the following secular determinant 
equation, the eigenvalues (roots) of which give the 
molecular-orbital energy levels 

In~j - SijEI = O. 

Here we will consider the Hfickel approximation 
(Trinajstic, 1983), as this most directly shows the 
topological content of this approach. In the Hiickel 
approximation, all Hi,- values for the prr orbitals are 
set equal to a, all H o. are set equal to/3, and all S,j (i 
~ j )  are set equal to zero. As an example, consider 
cyclobutadiene (Fig. 6). Writing out the secular 
determinant equation in full, we obtain 

a - E  /3 0 /3 

/3 a - E  /3 0 

0 fl a - E  /3 

/3 0 /3 a - E  

=0 .  

sponding graph. If we use the normalized form of 
Hiickel theory, in which /3 is taken as the energy 
unit, and te is taken as the zero-energy reference 
point (Trinajstic, 1983), then the determinant of (7) 
becomes identical to the corresponding adjacency 
matrix. The eigenvectors of the adjacency matrix are 
identical to the Hiickel molecular orbitals. Hence, it 
is the topological (graphical) characteristics o f  a mol- 
ecule, rather than any geometrical details, that 
determine the form of  the Hfickel molecular orbitals. 
For cyclobutadiene, the orbital energies found from 
the secular determinant [i.e. the four roots of (7)] are 
E = tr + 2/3, a ( x 2) and a - 2/3. These are shown in 
Fig. 6, both in a conventional energy representation, 
and as a density-of-states diagram. 

Molecular building blocks 

When dealing with very complicated problems, we 
often resolve them into simple (usually additive or 
weakly interacting) components that are easier to 
handle. Molecular and crystal structures are no 
exception; we recognize structural building blocks 
and build hierarchies of structures using these 

(6) 'molecular bricks'. Let us consider this from a graph 
theoretical point of view. 

A graph G' is a subgraph of a graph G if the vertex 
and edge sets V(G') and (E(G') are subsets of the 
vertex and edge sets V(G) and E(G); this is illustrated 
in Fig. 7. We may express any graph as the sum of a 
set of subgraphs. The eigenvalues of each subgraph 
G' are a subset of the eigenvalues of the main graph 
G, and the eigenvalues of the main graph are the sum 
of the eigenvalues of all the subgraphs. In the last 
section, we saw that the eigenvalues of an adjacency 
matrix are identical to the Hiickel molecular orbitals. 
Now let us consider the construction of large mol- 

(7) ecules from smaller building blocks. This provides us 
with a convenient visual way of analyzing the con- 
nectivity of our molecule, and of relating molecules 
together. But this is not all. The fact that the eigen- 

The matrix entries in (7) may be compared with 
the cyclobutadiene structure of Fig. 6. The diagonal 
terms ( a - E )  can be thought of as the 'self- 
interaction' terms; in the absence of any off-diagonal 
/3 terms, there are no chemical bonds formed, and 
the roots of the equation are the energies of the 
electrons in the atomic orbitals themselves. When 
chemical bonding occurs, these energies are modified 
by the off-diagonal/3 terms. Thus, when two atoms 
are bonded together (i.e. atoms 1 and 2 in Fig. 6), 
there is a nonzero value at this particular (1,2) entry 
in the secular determinant; when two atoms are not 
bonded together (i.e. atoms 1 and 3 in Fig. 6), then 
the corresponding determinant entry (1,3) is zero. 
Referring to Fig. 5, we,see that this description is 
very similar to the adjacency matrix of the corre- 

1_i I"s IE a'2,B 'Ce 

4" -3 ce-2/3" 
CYCLOBUTADIENE 

~'2~ 

,  -2/3 
I I 
1 2 p(E) 

Density-of-States 
Fig. 6. The cyclobutadiene molecule (left); to the right are the four 

roots of equation (6), the electron energy levels are expressed in 
the usual form (centre) and in a density-of-states form (right). 
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values of the graphs of our building blocks are 
contained in the eigenvalues of the graph of the 
complete molecule indicates that we may consider 
our building blocks as orbital or energetic building 
blocks. Thus, there is an energetic basis for the use of 
fundamental building blocks (FBBs) in the represen- 
tation and hierarchical analysis of complex 
structures. 

Crystals 

We can conceive of constructing a crystal from 
constituent molecular building blocks, in this way 
considering the crystal as a giant molecule. However, 
it is not clear what influence translational periodicity 
will have on the energetics of this conceptual 
building process. To try to clarify this problem, we 
will now examine the energetic differences between a 
molecule and a crystal. 

What would happen if we were able to solve (7) 
for a giant molecule? The results are sketched in Fig. 
8. Solution of the secular determinant will give a very 
large number of molecular-orbital energies, and 
obviously their conventional representation solely as 
a function of energy is not very useful; such results 
are better expressed as a density-of-states diagram 
(Fig. 8), in which the electron occupation of a speci- 
fic energy interval (band) is expressed as a function 
of orbital energy. 

2 1 2 

G' c: G 

IF 

10 o 2 10 o 2 

0 3 4 ° 0 3 

V(G') =__ V(G) 

AND 
1 2 1 2 

3 

E(G') ~ E(G) 
4 3 

Fig. 7. The relationship between a graph G and a subgraph G' 
expressed in terms of the relevant vertex- and edge-sets 

So what happens in a crystal which has transla- 
tional symmetry? Obviously we cannot deal with a 
crystal using the same sort of calculation, as there 
are approximately Avogadro's number of atoms in a 
(macroscopic) crystal, far beyond any foreseeable 
computational capability. Instead, we must make use 
of the translational symmetry to reduce the problem 
to a manageable size. We do this by using Bloch 
orbitals (Ziman, 1965), in which the orbital content 
of the unit cell is constrained to the periodicity of the 
crystal. The secular determinant is solved at a rep- 
resentative set of points within the Brillouin zone 
(the special-points method), giving a (hopefully) rep- 
resentative sampling of the orbital energy levels that 
may be smoothed to give the usual density-of-states 
representation. The total orbital energy can then be 
calculated by integrating the electronic energy 
density-of-states up to the Fermi level. 

The differences between a molecule and a crystal 
may thus be summarized as follows: in a molecule, 
there is a discrete set of orbital energy levels; in a 
crystal, these levels broaden into bands whose 
occupancies as a function of energy are represented 
by the corresponding electronic energy density-of- 
states. 

The method of  moments 

The usual method for deriving the electronic 
energy density-of-states has little intuitive connection 
to what we usually think of as the essential features 
of a crystal structure, the relative positions of the 
atoms and the disposition of the chemical bonds. In 
this regard, Burdett, Lee & Sha (1984) have come up 
with a very important method of deriving the electro- 
nic energy density-of-states using the method of 
moments. I will give only a brief outline of the 
method; interested readers should consult the origi- 
nal paper for mathematical details, and are also 
referred to Burdett (1986, 1987) for further applica- 
tions in solid-state chemistry. 

E 
I 

p(E) 

Fig. 8. The electron energy levels for a giant molecule expressed in 
the usual way (left) and in a density-of-states form (right). 
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To solve the secular determinant (7), we diago- 
nalize the Hamiltonian matrix. The trace of this 
matrix may be expressed as 

Tr(l-l") = 2 :~,H,:H:...H,, (8) 

A topological (graphical) interpretation of one term 
in this sum is shown in Fig. 9. Each H,j term is the 
interaction integral between orbitals i and j, and 
hence is equal to fl (if the atoms are bonded) or zero 
(if the atoms are not bonded, or if i = j when a = 0). 
Thus, a single term {HuH~k...Hi,} in (8) is nonzero 
only if all H o. terms are nonzero. As the last H,j term 
is the interaction between the nth orbital and the first 
orbital, the {Ho.l-Ijk'"Hni } term represents a closed 
path of length n in the graph of the orbitals (mole- 
cule). In Fig. 9, the t e rm {Ho.I-IjkHkzHti } represents 
the clockwise path of length 4 around the cyclo- 
butadiene prr orbitals. Thus, the complete sum of (8) 
represents all circuits of length n through the graph 
of (the orbital structure of) the molecule. 

The trace of the Hfickel matrix remains invariant 
under diagonalization, and thus 

Tr(H n) = T r ( E ' ) =  /x,, (9) 

where E is the diagonal matrix of eigenvalues (energy 
levels) and p., is the nth moment of E, formally 
denoted by 

I.Zn= ~i Ei n. (10) 

The collection of moments {~,} may be inverted [see 
Burdett, Lee & Sha (1984) for mathematical details] 
to give the density-of-states. As we can evaluate 
Tr(tP) directly from the topology of the orbital 
interactions (bond topology), we thus derive the 
electronic energy density-of-states directly from the 
bond topology. Of course, we have already shown 
that this is the case by demonstrating the equivalence 
of the secular determinant and the adjacency matrix 
of the molecule. However, the method of moments 

generalizes quite readily to infinite systems (i.e. 
crystals). 

For an infinite system, we can define the nth 
moment of E as 

tz, = f E'p(E)dE, (I I) 

where p(E) is the density-of-states. In principle, the 
moments may be evaluated as before and inverted to 
give the electronic energy density-of-states. Thus, we 
see, in principle, the topological content of the elec- 
tronic energy density-of-states in an infinite system, 
which in turn emphasizes the energetic content of a 
topological (graphical) representation of periodic 
structure. However, we can go further than this. 
Burdett (1986) has shown that the energy difference 
between two structures can be expressed in terms of 
the first few disparate moments of their respective 
electronic energy density-of-states. Thus, when com- 
paring two structures, the important energetic terms 
are the most local topological differences between the 
structures. Putting this in structural terms, the impor- 
tant energetic terms involve differences in coordina- 
tion number (including ligand type) and differences 
in local polyhedral linkage. Furthermore, in struc- 
tures with bonds of different strengths, each edge of 
each path (walk) that contributes to each moment 
will be weighted according to the value of the 
strength (resonance integral) of the bond defining 
that edge. Thus, strongly bonded paths through the 
structure will contribute more to the moments of the 
electronic energy density-of-states than weakly 
bonded paths. The most important energetic features 
of a structure are thus not only the local connec- 
tivity, but the local connectivity of the strongly 
bonded coordination polyhedra in the structure. This 
provides energetic justification for a hypothesis that 
will be introduced later on, that structures may be 
ordered according to the polymerization of the more 
strongly bonded coordination polyhedra 
(Hawthorne, 1983). 

Hti 

Hij 

Hjk 

I k 
Hkt 

Fig. 9. Topological interpretation of a single term in the sum of 
equation (7); for each orbital i, the nonzero terms are a series of 
circuits of length n with orbital i as the origin; the term shown 
here has n = 4 (for cyclobutadiene). 

Topological aspects of crystal chemistry 

The stability of inorganic crystals is governed (some- 
times weakly) by a set of rules that dates back to 
early work on the electronic theory of valence 
(Lewis, 1916, 1923) and the structure of crystals. The 
most rigorous rule is that of electroneutrality: the 
sum o f  the formal  charges o f  all the ions in a crystal is 
zero. Although we tend to take this rule for granted, 
it is an extremely powerful constraint on possible 
chemical variations in crystals. Other rules grew out 
of observations on a few mineral and inorganic 
structures. Barlow [as described by Bragg, (1955, pp. 
270-271)] predicted the structure of NaC1 on the 
basis of sphere-packing arguments long before the 
discovery of X-ray diffraction. Bragg's (1913) solu- 
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tion of the structure of halite vindicated Barlow's 
arguments and the idea of structures as close pack- 
ings of spheres became useful in the solution of 
crystal structures. Bragg (1921) introduced the idea 
that atoms have a certain size, and produced a table 
of atomic radii. Bragg (1930) also introduced the 
idea of coordination number and considered silicate 
minerals as polymerizations of coordination poly- 
hedra. These ideas were refined by Pauling (1929, 
1960), who systematized them into his well known 
rules for the behavior of 'complex ionic crystals': 

(1) A coordination polyhedron of anions is formed 
about each cation, the cation-anion distance being 
determined by the radius sum and the ligancy (coor- 
dination number) of the cation being determined by 
the radius ratio. 

(2) The strength of a bond from a cation to an 
anion is equal to the cation charge divided by the 
cation coordination number; in a stable (ionic) struc- 
ture, the formal valence of each anion is approxi- 
mately equal to the sum of the incident bond 
strengths. 

(3) The presence of shared faces and edges between 
coordination polyhedra decreases the stability of a 
structure; this effect is large for cations of large 
valence and small ligancy. 

(4) In a crystal containing different cations, those 
with large valence and small coordination number 
tend not to share polyhedral elements with each 
other. 

These rules put some less rigorous constraints on 
the behavior of structures, constraints that are tradi- 
tionally associated with the ionic model of the chemi- 
cal bond; they allow us to make the following type of 
statements about the structure and chemistry of 
inorganic crystals: 

(a) the formula is electrically neutral; 
(b) we may make (weak) predictions of likely 

coordination numbers from the radius ratio rules; 
(c) we can make fairly good ( < 0.02 A) predictions 

of mean bond lengths by summing ionic radii. 
Compared with the enormous amount of struc- 

tural and chemical data available, our predictive 
capabilities concerning this information is limited in 
the extreme. The following questions are pertinent in 
this regard: 

(a) Within the constraint of electroneutrality, why 
do some stoichiometries occur whereas others do 
not? 

(b) Given a specific stoichiometry, what is its bond 
connectivity (bond topology)? 

(c) Given a specific stoichiometry and bond con- 
nectivity, what controls the site occupancies? 

These are some of the basic questions that need 
answering if we are going to understand and be able 
to predict the stability of inorganic atomic arrange- 
ments. 

Pauling's rules 

Let us consider how each of Pauling's rules relates 
to the topology of the bond connectivity in crystals. 

Rule (1). The mean interatomic distance in a 
coordination polyhedron can be determined by the 
radius sum. This point has been extensively 
developed up to the present (Shannon, 1976; Baur, 
1987; O'Keeffe & Brese, 1991), together with con- 
sideration of additional factors that also affect mean 
bond lengths in crystals (Shannon, 1975; Baur, 
1981). The first rule also states that the coordination 
number is determined by the radius ratio. This works 
reasonably well for small high-valence cations, but 
does not work well for large low-valence cations. For 
example, inspection of Shannon's (1976) table of 
ionic radii shows Na radii listed for coordination 
numbers from 4 to 12 with oxygen ligands, whereas a 
radius-ratio criterion would indicate that any cation 
can have (at most) only two coordination numbers 
for a specific anion. It is important to note that the 
coordination number of an atom is one of the lowest 
moments of the electronic energy density-of-states. 

Rule (2). This is also known (rather unfortunately) 
as the electrostatic valence rule. It has been further 
extended by Baur (1970, 1971), who developed a 
scheme for predicting individual bond lengths in 
crystals, given the bond connectivity, and by Brown 
& Shannon (1973), who quantitatively related the 
length of a bond to its strength (bond valence). The 
latter scheme has proved a powerful a posteriori 
method of examining crystal structures for crystal 
chemical purposes. This rule relates strongly to the 
local connectivity of strong bonds in a structure and 
again involves significant low-order moments of the 
electronic energy density-of-states. 

Rules (3) and (4). Both of these rules again relate 
to the local connectivity in a structure, and strongly 
affect the important low-order moments, both by 
different short paths resulting from different local 
bond topologies, and from differences in anion 
coordination numbers. 

These arguments show that Pauling's rules can all 
be intuitively related to bond topology and its effect 
on the low-order moments of the electronic energy 
density-of-states. 

Ionicity and covalency 

Pauling's rules were presented as ad hoc generali- 
zations, rationalized by qualitative arguments based 
on an electrostatic model of the chemical bond. This 
led to an association of these rules with the ionic 
model, and there has been considerable criticism of 
the second rule as an 'unrealistic' model for bonding 
in most solids. Nevertheless, these rules have been 
too useful to discard and, in various modifications, 
continue to be used to the present day. Clearly, their 
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proof is in their applicability to real structures rather 
than in the details of somewhat vague ionic argu- 
ments (Burdett & McLarnan, 1984). 

There has been significant progress in the past 15 
years in both rationalizing and predicting geomet- 
rical aspects of structures from a molecular-orbital 
viewpoint (Burdett, 1980; Gibbs, 1982; Tossell & 
Gibbs, 1977). In particular, it has been shown that 
many of the geometrical predictions of Pauling's 
rules can also be rationalized by molecular-orbital 
calculations on small structural fragments. Burdett & 
McLarnan (1984) show how the same predictions 
from Pauling's rules can be rationalized in terms of 
band-structure calculations, again focusing on the 
covalent interactions, but doing so for an infinite 
structure. It is interesting to note how these two 
approaches parallel the arguments given previously 
concerning the relationship between bond topology 
and energetics: 

(1) the energy of a molecular fragment is a func- 
tion of its topological characteristics via the form of 
the secular determinant; 

(2) the electronic energy density-of-states of a con- 
tinuous structure can be expressed in terms of the 
sum of the moments of the energy density-of-states, 
which is related to the topological properties of its 
bond network. 

The thread that links these ideas together is the 
topology of the bond network via its effect on the 
energy of the system. This also parallels our earlier 
conclusion that all of Pauling's rules relate to the 
topological characteristics of the bond network of a 
crystal. 

Consider two (dimorphic) structures of the same 
stoichiometry but different atomic arrangement. As 
the chemical formulae of the two structures are the 
same, the atomic components of the energy of each 
structure must be the same, and the difference in 
energy between the two structures must relate com- 
pletely to the difference in bond connectivity. This 
'general principles' argument emphasizes the import- 
ance of bond topology in structural stability and 
finds more specific expression in the method of 
moments developed by Burdett, Lee & Sha (1984). 
Thus, we come to the general conclusion that argu- 
ments o f  ionicity and~or covalency in structure are 
secondary to the overriding influence of  bond topology 
on the stability and energetics of  structure. 

Bond-valence theory 

Brown (1981, 1992) and O'Keeffe (1989, 1990) have 
developed a simple yet coherent approach to chemi- 
cal bonding in inorganic structures, based on Paul- 
ing's second rule and its more quantitative 
generalization by Brown & Shannon (1973). 

Although empirical bond-valence curves are now 
widely used, the general ideas of bond-valence theory 
have not yet seen the use that they deserve. I shall 
briefly review these ideas, as they can be developed 
further to deal in a very simple way with many 
aspects of complex inorganic structures that cannot 
be approached by other methods. 

Bond-valence relationships 

According to Pauling's second rule (Pauling, 
1960), bond strength, p, is defined as 

p = cation valence/cation 
coordination number = Z/cn. (12) 

Summing the bond strengths around the anions, the 
second rule states that the sum should be approxi- 
mately equal to the magnitude of the anion valence 

p -  IZanionl. (13) 
a n i o n  

Correlations between deviations from Pauling's 
second rule and bond-length variations in crystals 
have been parameterized for specific cation-anion 
bonds (see Allmann, 1975). For such schemes, I use 
the term bond valence, in contrast to the Pauling 
scheme for which I use the term bond strength; this is 
merely a convenient nomenclature without any other 
significance. 

Brown & Shannon (1973) expressed bond valence, 
s, as a function of bond length, R, in the following 
way 

S=SolR/Rol -N or s = IR/RII-", (14) 

where so, Ro, N, R~ and n are constants characteristic 
of cation-anion pairs, and were derived by fitting 
such equations to a large number of well-refined 
crystal structures under the constraint that the 
valence-sum rules work as closely as possible. In 
(14), Ro is nominally a refined parameter, but is 
obviously equal to the grand mean bond length for 
the particular bond pair and cation coordination 
number under consideration; So is equal to the Paul- 
ing bond strength. Thus, (R/Ro) - 1 and So is actually 
a scaling factor that ensures that the sum of the bond 
valences around an atom is approximately equal to 
the magnitude of its valence. 

Suppose that there is a delocalization of charge 
into the bonds, together with a reduction in the 
charge on each atom. For an A - - B  bond, let the 
residual charges change by ZApA and Z~ps, respec- 
tively. The (Pauling) bond strength [= scaling con- 
stant So in (14)] is given by ZApA/cn, where cn is the 
coordination number of atom A. Inserting these 
values into (14) and summing over the bonds around 
B gives 

Y.B = pAYSol R/Rol - N = pBIZBI. (15) 
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If PA-PB,  these terms cancel and the bond-valence 
equation works, provided the relative delocalization 
of charge from each formally ionized atom is not 
radically different. Thus, the bond-valence equation 
can apply from 'very ionic' to 'very covalent' situa- 
tions. 

Bond-valence theory as a molecular-orbital model 

There has been considerable criticism of Pauling's 
second rule and its more recent extensions; criticisms 
based on its perception as a description of ionic 
bonding. In this regard, Bragg (1930) produced an 
interesting argument to justify Pauling's second rule. 
He considered the (nearest-neighbor) forces that 
bond atoms together into coordination polyhedra, 
conceptually modeling the interactions by 'lines of 
force'. He noted that atoms that are closer together 
will have more lines of force between them, atoms 
that are further apart will have less lines of force, 
and that next-nearest neighbors can interact only 
through their nearest-neighbors. The 'charge' of the 
bond strength was associated with the bond between 
two atoms and the amount of charge was inversely 
related to the bond length. This sounds much more 
like a molecular-orbital description of bonding than 
an ionic description, allowing for the unconventional 
vocabulary used in the argument. 

In their original work, Brown & Shannon (1973) 
emphasized the difference between bond-valence 
theory and the ionic model. In bond-valence theory, 
the structure consists of a series of atomic cores held 
together by valence electrons that are associated with 
the chemical bonds between atoms; they also expli- 
citly state that the valence electrons may be associ- 
ated with chemical bonds in a symmetric (covalent) 
or asymmetric (ionic) manner. However, a priori 
knowledge of the electron distribution is not neces- 
sary, as it is quantitatively derived from the applica- 
tion of the bond-valence curves to the observed 
structure. Indeed, Burdett & Hawthorne (1993) show 
how the bond-valence bond-length relationship may 
be derived algebraically from a molecular-orbital 
description of a solid in which there is a significant 
energy gap between the interacting orbitals on adja- 
cent atoms. Thus, we may consider bond-valence 
theory as a very simple form of  molecular-orbital 
theory, parameterized via interatomic distance rather 
than electronegativity or ionization potential, and (ar- 
bitrarily) scaled via the valence-sum rule. 

Network solids 

Let us define a crystal, liquid or molecule as a 
network of atoms connected by chemical bonds. For 
the materials in which we are interested, any path 
through this network contains alternating cations 
and anions, and the total network is subject to the 

law of  electroneutrality: the total valence of the 
cations is equal to the total valence of the anions. A 
bond valence can be assigned to each bond such that 
the valence-sum rule is obeyed: the sum of  the bond 
valences at each atom is equal to the magnitude of  the 
atomic valence. If the interatomic distances are 
known, then the bond valences can be calculated 
from the curves of Brown (1981); if the interatomic 
distances are not known, then the bond valences can 
be approximated by Pauling's bond strengths. 

Characteristic bond valences 

So far, we have been dealing with formalizations 
from and extensions of Pauling's rules. Although these 
ideas are important, they are an a posteriori analy- 
sis: the structure must be known in detail before we 
can apply these ideas. This is obviously not satisfac- 
tory. We need an a priori approach to structure 
stability if we are to develop any predictive capabi- 
lity. In this regard, Brown (1981) introduced a very 
important idea. If we examine the bond valences 
around a specific cation in a wide range of crystal 
structures, we find that the values lie within ca 20% 
of the mean value; this mean value is thus charac- 
teristic of that particular cation. If the cation only 
occurs in one type of coordination, then the mean 
bond valence for that cation will be equal to the 
Pauling bond strength; thus, P always occurs in 
tetrahedral coordination to O, and will hence have a 
mean bond valence of 5/4 = 1.25 v.u. If the cation 
has more than one coordination number, then the 
mean bond valence will be equal to the weighted 
mean of the bond valences in all the observed struc- 
tures. Thus, Fe 2+ occurs in various coordinations 
from 4 to 8; the tendency is for four- and five- 
coordinations to be more common than seven- and 
eight-coordinations, and hence the mean bond 
valence is 0.40 v.u. 

As the mean bond valence correlates with formal 
charge and cation size, it should vary systematically 
through the periodic table; this is in fact the case. 
Table 1 shows these values, smoothed across the 
periods and down the groups of the periodic table. 

Lewis acid and base strengths 

The mean bond valence of a cation correlates 
strongly with its electronegativiO, (Fig. 10). Concept- 
ually, this is not surprising. The electronegativity is a 
measure of the electrophilic strength (electron- 
accepting capacity) of the cation and the correlation 
with its characteristic bond valence (Fig. 10) 
indicates that the latter is a measure of the Lewis acid 
strength of the cation (see also O'Keeffe & Brese, 
1991). Thus, we have the following definition 
(Brown, 1981): 
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Table 1. Lewis acid strengths (v.u.)for  cations 

Li 0.22 Sc 0.50 Cu 2 + 0.45 

Be 0.50 Ti s ÷ 0.50 Zn 0.36 

B 0.88 Ti 4 ÷ 0.75 Ga 0.50 

C 1.30 V 3 ÷ 0.50 Ge 0.75 
N 1.75 V ~÷ 1.20 As 1.02 
Na 0.16 Cr 3 ÷ 0.50 Se 1.30 
Mg 0.36 Cr 6 ÷ 1.50 Rb 0.10 
AI 0.63 Mn 2 ÷ 0.36 Sr 0.24 
Si 0.95 Mn 3 ÷ 0.50 Sn 0.66 
P 1.30 Mn 4 + 0.67 Sb 0.86 
S 1.65 Fe 2 + 0.36 Te 1.06 

CI 2.00 Fe 3 + 0.50 Cs 0.08 
K 0.13 Co 2 ÷ 0.40 Ba 0.20 
Ca 0.29 Ni 2 ÷ 0.50 Pb 2 ÷ 0.20 

Values  t a k e n  f r o m  B r o w n  (1981), except  Pb  2÷ which  was  
e s t ima ted  f r o m  several  oxysa l t  m i n e r a l  s t ruc tures .  

The Lewd acid strength of  a cation may be defined 
as the characteristic (bond) valence = atomic (formal) 
valence~mean coordination number. 

We can define the Lewis base strength of an anion 
in exactly the same way, as the characteristic valence 
of the bonds formed by the anion. However, bond- 
valence variations around anions are much greater 
than those around cations. For example, the valences 
of the bonds to 0 2 -  vary between nearly zero and 
2.0 v.u.; thus, in Na[AI(SOa)2(H20)6].(H20)6 
(Cromer, Kay & Larsen, 1967), Na is in 12- 
coordination and the O atom to which it is bonded 
receives 0.08 v.u. from the N a - - O  bond; conversely 
in CrO3 (Stephens & Cruickshank, 1970), one O is 
bonded only to Cr 6+ and receives 2.00 v.u. from the 
C r - - O  bond. With this kind of variation, it is not 
particularly useful to define a Lewis base strength for 
a simple anion such as 0 2-. 

Table 2. Lewis basicities (v.u.)for  selected oxyanions 

(BO3) 3- 0.33 (CO3) 2- 0.25 
(SiO4)'- 0.33 (NO3) 3- 0.12 
(AIO4) 3 - 0.42 (VO4) 3- 0.25 
(PO4) 3 - 0.25 (SO,) 2 - 0. I 7 

(AsO,) 3- 0.25 (CrO4) 2- 0.17 

The situation is entirely different if we consider 
complex oxyanions. Consider the (SO4) 2- oxyanion 
shown in Fig. 11. Each O atom receives 1.5 v.u. from 
the central S 6÷ cation and hence each O atom of the 
group needs an additional 0.5 v.u. to be supplied by 
additional cations. If the O coordination number is 
[n], then the average valence of the bonds to 0 2- 
(exclusive of the S - -O  bond) is 0.5/(n - 1) v.u.; thus, 
if n = 2,3,4 or 5, then the mean bond valences to the 
O are 0.50, 0.25, 0.17 or 0.11 v.u., respectively. As all 
the O atoms in the (SO4) 2- oxyanion have the same 
environment, then the average bond valence received 
by the oxyanion is the same as the average bond 
valence received by the individual O atoms. In this 
way, we can define the Lewis basicity of an 
oxyanion. Note that for the (SO4) 2- oxyanion dis- 
cussed above, the possible average bond valences are 
quite tightly constrained (0.50-0.11 v.u.) and we can 
easily calculate a useful Lewis basicity. Table 2 lists 
Lewis basicities for some common inorganic 
oxyanions. 

The valence-matching pr&ciple 

The definitions of Lewis acid and base strengths 
lead to a specific criterion for chemical bonding, the 
valence-matching principle: 
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Fig. I0. Lewis acid strength (mean bond valence for a specific 
cation) as a function of cation electronegativity (from Brown, 
1981); circles are main-group elements in their highest oxidation 
state, crosses ( x, + ) are the same elements in lower oxidation 
states. 

%% 

o.? 

d s j #  v 

0 . 1 7  : 

O. 1 7  

O . 1 7  ~ 0 . 1 7  
% I J 

I ~a 

0 . 1 7  

' i !  - ' 0 - 1 7  

, . ~  0.17 

s I • 

0 . 1 7  I O . 1 7  
0 . 1 7  

Fig. 11. B o n d - v a l e n c e  s t ruc tu re  o f  the (SO4)2- o x y a n i o n ,  wi th  the 
i n d i v i d u a l  b o n d  va lences  s h o w n  in v.u. ;  • = su lphu r ,  ( 3 =  

oxygen.  



494 OXIDE AND OXYSALT CRYSTALS 

The most stable structures will form when the Lewis 
acid strength of  the cation closely matches the Lewis 
base strength of  the anion. 

We can consider this as the chemical analogue of 
the handshaking principle in combinatorial mathe- 
matics and the 'kissing' principle in social rela- 
tionships. As a chemical bond contains two 
constituents, then the properties of the constituents 
must match for a stable configuration to form. 

Simple applications of  the valence-matching principle 

Na2SO4 (Hawthorne & Ferguson, 1975a) illus- 
trates both the utility of defining a Lewis base 
strength for an oxyanion and the working of the 
valence-matching principle (Fig. 11). As outlined 
above, the bond valences to 0 2- vary between 0.17 
and 1.50v.u. Assuming a mean O coordination 
number of 4, the Lewis basicity of the (SO4) z- 
oxyanion is 0.17 v.u., which agrees very well with the 
Lewis acidity of 0.16 v.u. for Na given in Table 1. 
Thus, the Na--(SO4) bond is in accordance with the 
valence-matching principle and Na2SO4 is a stable 
structure. 

Consider the formula NaaSiO4. The Lewis basicity 
of the (SiO4) 4- oxyanion is 0.33 v.u. (Table 2) and 
the Lewis acidity of Na is 0.17 v.u. These values do 
not agree and thus a stable bond cannot form; 
consequently, NaaSiO4 is not a very stable material. 

Consider the formula Ca2SiO4. The Lewis basicity 
of (SiO4) 2- is 0.33 v.u. and the Lewis acidity of Ca is 
0.29 v.u. These values agree reasonably well and 
Ca2SiO4 is stable as the mineral larnite. 

Consider the formula CaSO4. The relevant Lewis 
basicity and acidity are 0.17 and 0.29 v.u., respec- 
tively; according to the valence-matching principle, 
we do not expect a stable structure to form. How- 
ever, the mineral anhydrite is stable, the cation and 
anion coordination numbers both reducing to allow 
the structure to satisfy the valence-sum rule 
(Hawthorne & Ferguson, 1975b). However, 
anhydrite hydrates readily in the presence of water to 
produce gypsum, CaSO4.(H20)2; this instability is 
suggested by the violation of the valence-matching 
principle. 

These simple examples illustrate the power of the 
valence-matching principle as a simple way in which 
we can consider the possibility of cation-anion inter- 
actions of interest. It is important to recognize that 
this is an a priori analysis, rather than the a posteriori 
analysis of Pauling's second rule and its various 
modifications. 

A hierarchical approach to structure 

The utility of organizing crystal structures into hier- 
archical sequences has long been recognized. Bragg 

(1930) classified the silicate minerals according to the 
way in which the (SiO4) tetrahedra polymerize, and 
this scheme was generalized to polymerized tetra- 
hedral structures by Zoltai (1960) and Liebau (1985). 
Further developments along similar lines were the 
classifications of the aluminium hexafluoride min- 
erals (Pabst, 1950; Hawthorne, 1984a) and the borate 
minerals (Christ, 1960; Christ & Clark, 1977). Such 
an approach to hierarchical organization is of little 
use in such chemical groups as the phosphates or the 
sulphates, in which the principal oxyanion does not 
self-polymerize. Moore (1984) developed a classifi- 
cation of phosphate minerals, based on the poly- 
merization of divalent and trivalent metal octahedra. 
However, all these hierarchical schemes focus on 
specific chemical classes of compounds and are not 
easily adapted to other classes. 

We can approach this general problem within the 
framework of bond-valence theory. First let us con- 
sider the cations in a structure. The cation bond- 
valence requirements are satisfied by the formation 
of anion coordination polyhedra around them. Thus, 
we can think of a structure as an array of complex 
anions that polymerize in order to satisfy their 
(simple) anion bond-valence requirements according 
to the valence-sum rule. Let the bond valences in an 
array of coordination polyhedra be represented by s~ 

"+' The valence-sum rule ( i=  1, n), where So" > So 
indicates that polymerization can occur when 

1 i 
S O n t- S o <  I Vanionl (16) 

and the valence-sum rule is most easily satisfied when 
1 i So +So = ] Vanion]. (17) 

This suggests that the most important polymeriza- 
tions involve those coordination polyhedra with 
higher bond valences, subject to the constraint of 
(17), as these linkages most easily satisfy the valence- 
sum rule (under the constraint of maximum volume). 

,4 general hypothesis 

Hawthorne (1983) has proposed the following 
hypothesis: 

Structures may be hierarchically ordered according 
to the polymerization of  coordination polyhedra with 
higher bond valences. 

There are two important points to be made with 
regard to this idea: 

(1) we define the structural elements by bond 
valences rather than by chemistry; consequently, 
there is no division of structures into different chemi- 
cal groups, except as occurs naturally via the differ- 
ent 'strengths' of the chemical bonds. 

(2) Earlier, we argued that the topology of the 
bond network is a major feature controlling the 
energy of a structure. The polymerization of the 
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principal coordination polyhedra is merely another 
way of expressing the topology of the bond network. 
Thus, at the intuitive level, we can recognize an 
energetic basis for the hierarchical organization of 
structures according to the details of their polyhedral 
polymerization. 

Dimensional polymerization 

Families of complex structures are often based on 
different arrangements of a fundamental building 
block (FBB). This is a tightly-bonded unit within the 
structure and can be envisaged as the inorganic 
analogue of a molecule in an organic structure. The 
FBB is usually a homo- or heteropolyhedral cluster of 
coordination polyhedra with the strongest bond- 
valence linkages in the structure. The FBB is 
repeated, usually polymerized, to form the structural 
unit, a complex anionic polyhedral array whose 
charge is balanced by the presence of large low- 
valence interstitial cations (usually alkalis or alkaline 
earths). These definitions are illustrated for the min- 
eral tornebohmite in Fig. 12. The following nomen- 
clature is used here: M---five-coordinate, T = three- 
or four-coordinated, ~b = unspecified anion. 

The various structural units can be arranged 
according to the mode of polymerization: 

(a) Unconnected polyhedra, (b) finite clusters, (c) 
infinite chains, (d) infinite sheets and (e) infinite 
frameworks. 

As will be shown later, hydrogen-containing 
groups [e.g. (OH)- ,  (H20) °] often exert a major 
control on the dimensional character of the struc- 
tural unit (Hawthorne, 1992). Most work has 
focused on structures with triangles, tetrahedra and 
octahedra as principal coordination components of 
the structural unit (Hawthorne, 1979, 1984a, 1985a, 
1986, 1990; Eby & Hawthorne, 1993; Moore, 
1970a,b, 1973, 1974, 1975, 1982, 1984; Lima de 
Faria, 1983; Lima de Faria & Figueiredo, 1976), 

o 

c sin/~ ~ .  
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Fig. 12. The structural unit and the interstitial species in 
tornebohmite. 

although there has been some notable work (Moore, 
1981) on structures with important higher coordina- 
tion numbers. The following outline cannot, of 
course, be comprehensive, but it is hopefully rep- 
resentative of the diversity shown by these types of 
structures. I shall focus on the structures of minerals 
for several reasons. First, much work of this type has 
involved mineral structures. Second, this restriction 
provides a reasonable sampling of inorganic oxysalt 
structures, from simple close-packed oxides to very 
complicated quasi-zeolitic hydroxy-hydrated oxy- 
salts. There are certain regularities that become 
apparent when structures are examined in this 
fashion. I shall draw attention to these without 
necessarily providing an explanation; indeed, many 
of these features are, as yet, unexplained, but they all 
indicate nature's economy of effort when it comes to 
structural design in crystals. 

Unconnected-polyhedra structures 

In crystals of this class, low-coordination 
oxyanions [e.g. (504) 2-, (PO4) 3-, (CO3) 2-, (NO3)- 
and (TeO4) 2-] and intermediate coordination com- 
plex cations [e.g. {Mg(H20)6} and {AI(H20)sF}] are 
linked together by large low-valence interstitial 
cations and by hydrogen bonding; thus, the (H20) 
group usually plays a major role in the structural 
chemistry of this particular class of structures. Tetra- 
hedral cations are coordinated by oxygens and octa- 
hedral cations are coordinated predominantly by 
(H20) groups; the exceptions to the latter are khade- 
mite and the minerals of the fleischerite group (Table 
3), in which the octahedral groups are [AI(H20)sF] 
and [Ge(OH)6], respectively. It is notable that khade- 
mite is the only M(Tt4p4)dpn structure (in this class) 
with a trivalent octahedral cation; all other com- 
pounds have divalent octahedral cations. Similarly, 
the fleischerite-group minerals are the only 
M(T~ba)z~bn minerals (in this class) with tetravalent 
octahedral cations; all other minerals of this stoichi- 
ometry have trivalent octahedral cations. 

From an inspection of Table 3, some rules 
governing the compositions of these isolated polyhe- 
dra structures become apparent. The Lewis basicity 
of the (T~b4) group must be low (i.e. < 0.20 v.u.), 
otherwise the valence-matching principle forces it to 
bond to a strong Lewis acid and form a polymerized 
structural unit. Thus, these compounds are predomi- 
nantly sulphates (or other hexavalent TO 4 salts). 
When a pentavalent T cation (such as P or As) 
occurs, it does so as an acid (PO3OH) group; it is 
notable that such acid pentavalent-cation groups 
have a Lewis basicity of 0.18 v.u. [very similar to the 
value of 0.17 v.u. for the hexavalent (TOn) groups 
and significantly different from the Lewis basicity of 
0.25 v.u. for the (PO4) group]. The only exception is 
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Table 3. Selected M( Tq~4)dpn, M( T~p4)2dpn and Mx(T~)3)y~/) z minerals based on unconnected polyhedra 

M(Tcb4)~b. mineral Formula Space group M(T~b4)2fb. mineral Formula Space group 
Bianchite [Zn(H20)o][SO4] C2/c Amarillite Na[Fe 3÷ (SO4)2(H20)t~] 192, la 
Ferrohexahydrite [Fe2 + (H20)d[SOa] C21c Tamarugite Na[AI(SO.)2(H~O)d P2i/a 
Hexahydrite [Mg(HzO)6][SO4] C2/c 
Moorhouseite [Co(H20)o][SO4] C2/c Mendozite Na[AI(SO4)2(H~O)6](H20), C2/c 
Nickel hexahydrite [Ni(H20)o][SO,] C2/c Kalinite K[AI(SO4)~(H~O)o](H~O)s C2/c 
Retgersite [Ni(H~O)6][SO,] P4,2~2t Sodium alum Na[AI(SO,)~(H..O)6](H ~O)o Pa3 

Potassium alum K[AI(SO4):(H~O)~](H ~O)~ Pa3 
Khademite [AI(H20).~F][SO4] Pcab Tschermigite NH4[AI(SO4)~(H~O)6](H20)o Pa3 
Epsomite [Mg(H20)o][SOa](H20) P212 , 2, Apjohnite M n[AI(SO,)~(H 20)6](H ~O), 0 P2,/c 
Goslarite [Zn(H20)0][SO4](H~O) P2,2~2, Bilinite Fe ~ ÷ [Fe ~ (SO,).,(H~O)d(H20)m P2,/c 
Morenosite [Ni(H~O)o][SO,](H20) P2 I2,2t Dietrichite Zn[AI(SO4)2(H20)d(H..O),o P2,/c 

Halotrichite Fe ~' [AI(SO4)~(H~O)~](H~O)., P2~/c 
Bierberite [Co(H~O)0][SO~](H~O) P2,/c Pickeringite M g[AI(SO4)~(H.O)o](H.O)., P2,/c 
Boothite [Cu(H:O)6][SO4](HzO) P2,/c Redingtonite Fe-" ' [Cr(SO.)~(H.O)~](H:O),o P2,/c 
Mallardite [M n(H20)6][SO4](H20) P2~/c 
Melanterite [Fe-' ÷ (H20)~][SO4](H~O) P2,/c Aubertite Cu-" [AI(SO,):(H:O)~]CI(H :O)~ PT 
Zinc melanterite [Zn(H20)o][SO~](H20) P2,/c 

Boussingaultite (NH,):[Mg(SO4)~(H~O)~] P2,/c 
Phosphorroesslerite [Mg(H.,O)6][PO3(OH)](H 20) C2/c Cyanochroite Kz[Cu :" (SO4)2(H20)e,] P2,/C 
Roesslerite [Mg(H20)o][AsO~(OH)](H20) C21c Mohrite (NH4):[Fe 2" (504)2(H20)o] e2,!c 

Picromerite K.[Mg(SO,)2(H ~O)o] P2,/c 
Struvite NH,[Mg(HzO)d[PO,] Pmn2t 

Despujolsite Ca~[Mn '~ (SO4)~(OH)6](H.O)~ P62c 
Fleischerite Pb3[Ge(SO,).(OH)~](H ~O), P62c 
Schauertite Ca.~[Ge(SO~)~(OH)6](H.O)~ P62c 

struvite which has a (PO4) group (Table 3). However, 
struvite has (NH4) ÷ as the interstitial complex-cation 
species and (NH4) ÷ has a Lewis acidity of 0.25 v.u. 
(Table 1); thus, solely because of the nature of the 
interstitial cation in struvite, this mineral can have an 
isolated (PO4) group. Hence, bond-valence con- 
siderations seem to account quite nicely for the 
compositional characteristics of these isolated- 
polyhedral structures. 

Finite-cluster structures 

Selected compounds of this class are given in 
Table 4, and the different types of clusters found in 
these minerals are illustrated in Fig. 13. 

A 
(a) 

(b) (c) 

(d) 
(e) (t3 

Fig. 13. Finite polyhedral clusters in [M(T~4)~b4] and [M(Td~4)2d~,] 
structures: (a) the [M2(T~b4)2~bm] cluster in jurbanite; (b) the 
[M2(Td~4)2~bs] cluster in the rozenite group minerals; (c) the 
[M2(T~b4)2~bT] cluster in morinite; (d) the cis-[M(Tcb4)2cb4] clus- 
ter in roemerite; (e) the trans-[M(Tcb4)2Cb4] cluster in anapaite, 
bloedite, leonite and schertelite; ( f )  the [M3(T~b4)6&4] cluster in 
metavoltine; (g) the [M(Tq~3)2q~4] cluster in baylissite. 

Table 4. M(Zq~4)q~n, M(Tq~4)2q~ n and Mx(Tq~3),.fb_ 
minerals based on finite clusters of  MdP6 octahedra, 

T~/) 4 tetrahedra and Td~3 tr&ngles 

Space 
M( T~)4 ) ~) n F o r m u l a  group Fig. 
Jurbanite [AI(SO4)(OH)(H20)a](H20) P2, n 13a 
Aplowite [Co(504)(H20)4 ] P2~ n 13b 
Boyleite [Zn(SO4)(H 20)4] P21 'n 13b 
llesite [Mn(SO,)(H20)4] P2j,n 13b 
Rozenite [Fe 2" (SO4)(H.,O)4] P2,,n 13b 
Starkeyite [Mg(SO,)(H20)4] P21,'n 13b 
Morinite Ca2Na[A12(PO,)2Fa(OH)(H.O):]. P2,,'m 13c 
M,(T~), ~b. Formula 

mineral 
Baylissite K2[Mg(CO02(H..O)4] P2dn 13g 
Anapaite Ca2[Fe ~' (PO4)2(H20)4] PI 13e 
Bloedite N a 2[M g( SO4)..(H ..O)4] P2j/a 13e 
Leonite K2[Mg(SO4)2(H20)4] C2'm 13e 
Schertelite (N H4)2[Mg(PO~OH)~(H20),] Phca 13e 
Roemerite Fe 2" [Fe ~' (SO4)~(H:O),]2(H20)~ P/ 13d 
Metavoltine K.,Na6Fe:" [Fe]" (SOa)60(H20)~]2(H20),. P3 13./" 

In jurbanite (Sabelli, 1985a), the cluster consists of 
an octahedral edge-sharing dimer of the form 
[AI2(OH)2(H20)8] and an isolated (SO4) tetrahedron 
[Fig. 13(a)]. These two fragments are bound together 
by hydrogen bonding from the octahedra] dimer 
(donor) to the tetrahedron (acceptor) and hence, 
jurbanite is actually transitional between the uncon- 
nected polyhedra structures and the finite-cluster 
structures. 

In the M(Tfba)dpn minerals, the structures of the 
members of the rozenite group are based on the 
[M2(Tq~a)2~b8] cluster [Fig. 13(b)], linked solely by 
hydrogen bonding between adjacent clusters. The 
morinite structure (Hawthorne, 1979) is based on the 
[M2(Tq~a)2~b7 ] cluster [Fig. 13(c)], linked by interstitial 
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cations as well as interunit hydrogen bonds. 
Hawthorne (1983) derived all possible finite clusters 
of the form [M2(T~P4)2~Pn ] with no linkage between 
tetrahedra and with only corner-sharing between 
tetrahedra and octahedra. Based on the conjecture 
that the more stable clusters are those in which the 
maximum number of anions have their bond- 
valences most nearly satisfied, four clusters were 
predicted to be the most stable; two of these are the 
clusters of Figs. 13(b) and (c). 

There is far more structural variety in the 
M(T~Pa)2q~n minerals (Table 4). Anapaite, bloedite, 
leonite and schertelite are based on the simple 
[M(T~b4)2~b4] cluster of Fig. 13(d), linked by a vari- 
ety of interstitial cations and hydrogen-bond 
arrangements (Hawthorne, 1985c). Roemerite 
(Fanfani, Nunzi & Zanazzi, 1970) is also based on an 
[M(T~b4)2~b4] cluster, but in the cis rather than in the 
trans arrangement [Fig. 13(e)] .  Metavoltine 
(Giacovazzo, Scordari, Todisco & Menchetti, 1976) 
is built from a complex but elegant [M3(T~b4)6~b4] 
cluster [Fig. 1300] that is also found in a series of 
synthetic compounds investigated by Scordari (1980, 
1981). Again it is notable that the M(T~b4)~b, min- 
erals in this class are characterized by interstitial 
cations, whereas the bulk of the M(T~b4)~b,, minerals 
are not, as was the case for the unconnected poly- 
hedra structures. 

Baylissite (Bucat, Patrick, White & Willis, 1977) is 
based on an  [M(Tq~3)2q~4] finite cluster [Fig. 13(g)] 
that resembles the [M(Tq~n)2q~4] cluster [Fig. 13(e)]. 
These clusters pack together to form rather open 
sheets that are similar to the cluster packings in the 
a n a l o g o u s  [M(Tq~4)2~b4] cluster compounds 
(Hawthorne, 1985c). 

The energetic considerations outlined previously 
suggest that the stability of these finite-cluster struc- 
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• [110] 
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Fig. 14. Selected finite cluster structures of [M(T~b4)4b,] and 
[M(T~b4)2~b,] stoichiometry: (a) rozenite; (b) morinite; (c) bloe- 
dite; (d), (e) leonite; ( f )  schertelite; (g) anapaite. 

tures will be dominated by the topological aspects of 
their connectivity. Nevertheless, it is apparent from 
the structures of Table 4 that this is not the only 
significant aspect of their stability. Fig. 14 shows the 
structures of most of the minerals of Table 4. It is 
very striking that these clusters pack in essentially 
the same fashion, irrespective of their nature, and 
irrespective of their interstitial species. Although a 
more detailed examination of this point is desirable, 
its very observation indicates that not only does 
nature choose a very small number of fundamental 
building blocks, but she also is very economical in 
her ways of linking them together. 
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Fig. 15. Infnite chains in [M(Tdp4)q~,] and [M(Tq~4)24b,] structures: 
(a) the [M(T~b4)4b4] chain in the chalcanthite-group minerals, 
liroconite and brassite; (b) the [M(T~b4)~b3] chain in butlerite, 
parabutlerite, the childrenite group and uklonskovite; (c) the 
[M(T~ba)q~3] chain in fibbroferrite; (d) the [M(T~b4)~b ] chain in 
chlorotionite; (e) the [M(Tq~4)~b2] chain in the linarite-group 
minerals; 0 c) the [M2(T~b4)4~bs] chain in amarantite and hoh- 
mannite; (g) the [M(T&4)2~b2] chain in the krohnkite, talmessite 
and fairfieldite groups; (h) the [M(To~4)2~b] chain in tancoite, 
sideronatrite, the jahnsite and segelerite groups, guildite and 
yftisite; (i) the [M(Tcb4)zcb] chain in the brackebuschite, fornacite 
and vauquelinite groups; (/3 the [M(T~b4)2~b] chain in ransomite 
and krausite; (k) the [M2(T464)4~bs] chain in botryogen; (1) the 
[M(Tq~3)4] chain in sahamalite; (m) the [M(T4b3)~b2] chain in 
nesquehonite; (n) the [M(T4b3)~b] chain in chalconatronite; (0) 
the [M(T(b3)dpz] chain in dundasite; (p) the [Mz(T~3)~bs] chain in 
artinite. 
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Table 5. M(Tq~4)dPn , M(Tq~4)2q~n and Mx(Tq~3)yq~ z minerals based on infinite chains of MdP6 octahedra, T¢4 
tetrahedra and Tdp3 triangles 

M(T¢4)&.  Space M(T&4)2¢. Space 
mineral Formula group Fig. mineral  Formula  group Fig. 
Chalcanthite [Cu(SO4)(H20)4](H20) PI 15a Brandtite Ca2[Mn(AsO4)2(H20)2] P2j/c 15g 
Jokokuite [Mn(SO4)(H20)4](H20) P]" 15a Krohnkite Na2[Cu(SO4)2(H20)2] P2~/c 15g 
Pentahydrite [Mg(SO4)(H20)4](H20) PI 15a Roselite Ca2[Co(AsO4)2(H20)2] P2Jc 15g 
Siderotil [Fe 2 ÷ (SO4)(H2Oh](H20) Pi 15a 

Cassidyite Ca2[Ni(PO4)2(H20)2] PI 15g 
Liroconite Cu2[AI(AsO,)(OHh](H2Oh 12/a 15a Collinsite Ca2[M g(PO,)2(H20)2] PI ! 5g 

Gaitite Ca2[Zn(AsO4)2(H20)2] PI 15g 
B r a s s i t e  [Mg(AsO3(OH))(H 20)4] Pbca 15a Roselite-beta Ca2[Co(AsO,)2(H20)2] P1 15g 

Talmessite Ca2[Mg(AsO4)2(H20)2] PI 15g 
Butlerite [Fe 3 ÷ (SO4)(OH)(H20)2] P2Jm 15b 

Fairf ie ldite  Ca2[Mn(PO,)2(H20)2] P/  15g 
Parabutlerite [Fe 3 ÷ (SO,)(OH)(H20)2] Pmnb 15b Messelite Ca2[Fe 2 ÷ (PO4)2(H20)2] P/  15g 
Childrenite Mn 2' [AI(PO4)(OH)2(H20)] Bbam 15b Tancoite Na2LiH[AI(PO4)2(OH)] Pbcb 15h 
Eosphorite Fe 2 * [AI(PO4)(OH)2(H 20)] Bbam 15b 

Sideronatrite Na2[Fe 3" (SO,)2(OH)](H20)3 Pnn2 15h 
Uklonskovite Na[Mg(SO,)(OH)(H20)2] P2~/m 15b 

Jahnsite CaMnMg2[Fe 3" (PO4)2(OH)]2(H20)a P2/a 15h 
Fibroferrite [Fe 3 ÷ (SO,)(OH)(H20)2](H20)4 R3 15c Whiteite CaFe 2. Mg2[AI(PO,)2(OH)]2(H20)8 P2/a 15h 
Chlorothionite K2[Cu(SO4)CI2] Pnma 15d Lun'okite Mn2Mg2[AI(PO4)2(OH)]2(H20)8 Pbca 15h 

Overite Ca2Mg2[AI(PO4)2(OH)]2(H20)s Pbca 15h 
Linarite Pb[Cu(SO,)(OH)2] P2Jm 15e Segelerite Ca2Mg2[Fe 3~ (PO4)2(OH)]2(H20)8 Pbca 15h 
Schmiederite Pb2[Cu2(SeO3)(SeO4)(OH)4] P2~/m 15e Wilhelmvierlingite Ca2Mn2[Fe 3~ (PO4)2(OH)]2(H.,O)x Pbca 15h 
Amarantite [Fe~ + (SO4)20(H20)4](H20)~ P-i" 15f Guildite Cu 2' [Fe a+ (SO4)2(OH)](H2OL P2,/rn 15h 
Hohmannite [Fe 3 ÷ (SO,)20(H20)4](H20)4 PT 15f 
Sahamalite *(RE)2[(Mg,Fe)(CO3),] P2Ja 15l Yftisite Y4[Ti(SiO,)20](F.OH)6 Cmcrn 15h 
Dresserite Ba[AI(CO3)(OH)2]2(H20) Pbnm 150 Arsenbrackebuschite Pb2[Fe 2' (AsO4)2(H20)] P2~/m 15i 
Dundasite Pb[AI(CO3)(OH)2]2(H20) Pbnm 15o Arsentsumebite Pb2[Cu(SO4)(AsO4)(OH)] P2tlm 15i 
Strontiodressrite (Sr,Ca)[AI(CO3)(OH)2]2(H20) Pbnm 150 Brackebuschite Pb2[Mn(VO4)2(H20)] P2~/m 15i 

Gamagarite Ba2[(Fe 3 * .Mn)(VO,)2(OH.H20)] P2~/m 15i 
Hydrodresserite Ba[AI(CO3)(OH)212(H20)3 P'f 15o Goedkenite Sr2[AI(PO4)2(OH)] P2~/m 15i 

Tsumebite Pb2[Cu(PO4)(SO,)(OH)] P2~lm 15i 
Dawsonite Na[AI(CO3)(OH)2] Imma 150 

Fornacite Pb2[Cu(AsO4)(CrO,)(OH)] P2~/c 15i 
Artinite Mg2[(CO3)(OH)2(H20)3] C2/m 21 Molybdofornacite Pb2[Cu(AsO4)(MoO,)(OH)] P2~/c 15i 

Tornebohmite *(RE)2[AI(SiO4)2(OH)] P2/c 15i 
Nesquehonite [Mg(CO3)(H20)2].H20 P2t/n 15m 

Vauquelinite Pb2[Cu(PO4)(CrO4)(OH)] P2~/n 15i 
Chalconatronite Na2[Cu(CO3~(H20)](H20), P2,/n 15n 

Ransomite Cu[Fe 3~ (SO4)2(H20)]2(H2Oh P2~/c 15j 
Krausite K[Fe 3+ (SO4)2(H20)] P2Jm 15j 
Botryogen Mg2[Fe~ + (SO4)4(OH)2(H20)2](H20),o P2j/n 15j 
Zincbotryogen Zn2[Fe~ ÷ (SO4)4(OH)2(H20)2](H20)~o P2~/n 15j 

* RE = rare earth elements. 

Infinite-cha& structures 

A large number of  possible [Mx(T¢4)vCz ] and 
[Mx(TdP3)yqbz] chains can be constructed from fun- 
damental building blocks involving one or two octa- 
hedra and one, two or four tetrahedra or triangles. 
Only a few of  these possible chains have actually 
been found in inorganic oxysalt structures and a 
cross-section of  these is shown in Fig. 15; selected 
structures based on these chains are listed in Table 5. 

We may divide the chains of  Fig. 15 into two 
types: c o m m o n  [(a), (b), (c), (g), (h), (/) and (1)] and 
r a r e  [(d), (e), (f), (j), (k), (m), (n), (o) and (p)]. 
Structures based on these chains are listed in Table 5. 
Minerals based on common chains are much more 
abundant than minerals based on rare chains and 
also tend to show many more isostructural species 
than minerals based on rare chains. 

Consider first the common chains of  stoichiometry 
[M(T~4)~n] [Figs. 15(a), (b) and (c)]. The first chain 
[Fig. 15(a)] has no linkage between octahedra, the 
second chain [Fig. 15(b)] has corner linkage between 
octahedra and the third chain [Fig. 15(c)] has edge 
linkage between octahedra. These are the more 
important of the chains in this group and it is 
notable that 

(a) they all have a fairly simple connectivity; 
(b) there is just one particular chain for each type 

of connectivity between octahedra; thus in the first 
chain, there is no direct linkage between octahedra; 
in the second chain, there is corner-sharing between 
octahedra; in the third chain, there is edge-sharing 
between octahedra. 

Graph-theoretical arguments show that there are 
200-300 distinct chains based on repeat units of  
[M(Tq~4)q~,,] and [M2(Tq~4)2q~2n]. Very few of  these 



F R A N K  C. H A W T H O R N E  499 

Table 6. M ( T ~ ) 4 ) ( ] ) n ,  M(T~b4)2~b,, and Mx(Tdp3)ydpz minerals 
tetrahedra and Td~3 

M (  Tqb,)dp. 

mineral 

Newberyite 
Minyulite 
Gordonite 
Laueite 
Paravauxite 
Sigloite 
Ushkovite 

Stewartite 

Pseudolaueite 

Strunzite 
Ferrostrunzite 

Metavauxite 
Tsumcorite 

Bermanite 

Foggite 

Arthurite 
Earlshannonite 
Ojuelaite 
Whitmoreite 
Krautite 

Fluckite 

Co-K oritnigite 
Koritnigite 
Kaolinite 
Dickite 
Nacrite 
Arseniosiderite 
Kolfanite 
Mitridatite 
Robertsite 

based on infinite sheets of Mdp6 octahedra, Tdp4 
triangles 

M (  Tt~4)2 ~bn Space 
mineral Formula group F i g .  

Rhomboclase (HsO2)[Fe 3+(SO4)2(H20)2] Pnma  17a 
Olmsteadite KFe22 * [Nb(PO4)202](H20)2 P b 2 : n  17b 
Brianite Na2Ca[Mg(PO4)2] P 2 / a  17c 
Merwinite Ca3[Mg(SiO4)2] P 2 J a  17c 

Yavapaite K[Fe 3 + ( 5 0 4 ) 2 ]  C2/m 17c 

Bafertisite BaFe:" [Ti(Si2OT)O:] C2/m 17d 

Pyrophyllite [AISi206(OH)] C i  - -  

Dioctahedrai ( M ÷ , M  2 ÷) C2 /m - -  
micas [(M 3 ÷ ,M ~ + )(Si,AI)2Os(OH)]2 

Ephesite NaLi[AI(Si,AI)2Os(OH)]2 C2/m - -  
Taenol i te  KLi[MgSi2Os(OH)]2 C2/m - -  
Dioctahedral (M + ,H20) - -  - -  

smectites [(M 3 ÷ ,M 2 * )(Si,AI)2Os(OH)]2 
Bramallite (M + ,H20):, - -  - -  

[(AI,Mg, Fe)(Si,AI)2Os(OH)]2 

Hydromica (M ÷ ,H20)x[AI(Si,AI)2Os(OH)]2 - -  - -  
lllite (M ÷ ,H20)x C2/c - -  

[(AI,Mg,Fe)(Si,AI)2Os(OH)]2 

Goldichite K2[Fe23~ (SOa)a(H20)4](H20)4 P 2 J c  - -  
Buetschliite K2[Ca(CO3)2] R3 17e 
Eitelite Na2[Mg(CO3)2] R3 17e 

Tunisite NaCa2CI[AI2(CO3)2(OH),]2 P4/nm 17 f  

Rodaquilarite H3CI[(Fe23 ÷(TeO)3)4] P I  17g 
Denningite (Ca.M n)[(Mn,Zn)(Te2Os)2] P42/n 17h 

Space 
Formula group F i g .  

[Mg(PO3OH)(H20)3] Pbca 16a 
K[AIz(PO4)2F(H20),] Pba2 16b 
Mg[AI2(PO,)2(OH)2(H20)2](H20),.2(H20) P i  16c 
Mn  2 * [Fe~ ~ (PO4)2(OH)2(H20)2](H20)4.2(H20) PT 16c 
Fe 2 + [AI2(PO4)2(OH)2(H20)2](H20)4.2(H20) P i  16c 
(Fe  3 + ,Fe 2 + )[AI2(PO4)2(OH)2(H20)2](H20,OH),.2(H20) P /  16c 
Mg[Fe23 ÷ (PO4)2(OH)2(H20)2](H20)4.2(H20) ,aT 16c 

Mn  2 + [Fe23 + (PO4)2(OH)2(H20)2](H20)4.2(H20) P I  16e 

Mn2 + [Fe3 + (PO4)(OH)(H20)]2(H20)4.2(H20) P 2 J a  16d 

Mn  2 ÷ [Fe 3 + (PO,)(OH)(H20)I : (H20)4 e i  
Fe 2 + [Fe ~ + (PO4)(OH)(H20)]2(H20)4 P i  

Fe 2 + [AI(PO4)(OH)(H20)]2(H20)6 P2~/c 15 f  
Pb[(Zn,Fe 3 + )(AsO4)(H20,OH)]2 C2/m 15h 

Mn 2 + [Mn 3 + (PO4)(OH)]2(H20)4 P21 15h 

Ca[AI(PO4)(OH)2](H20) A2,22 - -  

Cu[Fe  3 ÷ (AsO4)(OH)]2(H20)4 P 2 J c  15g 
Mn 2 ÷ [Fe 3 + (PO,)(OH)]2(H20)4 P 2 J c  15g 
Zn[Fe 3 ÷ (AsO,)(OH)]2(H20),  P2, /c  15g 
Fe 2 + [Fe 3" (PO4)(OH)]2(H20), P2~/c 15g 
[Mn 2 + (AsO3OH)(H20)]  P21 - -  

[CaMn 2 + (AsO3OH)2(H20)2] P I  - -  

[Co(AsO3OH)(H20)]  P /  - -  
[Zn(AsO3OH)(H20)]  P I  - -  
[AI2Si2Os(OH)4] C1 - -  
[A12Si2Os(OH)4] Cc - -  
[A12Si2Os(OH)4] Cc - -  
Ca2[Fe] ÷ (AsO4)302](H20)3 Aa - -  
Ca2[Fe] ÷ (AsO4)302](H20)2 Aa - -  
Ca2[Fe] + (PO4)302](H20)3 Aa - -  
Ca2[Mn 3 ÷ (PO4)302](H20)3 Aa - -  

are found in structures and by far the most common 
chains are the three simplest chains in which the 
octahedra share none, and one and two anions, 
respectively. 

Consider next the common chains of  stoichiometry 
[M(T~b4)2~b,,] [Figs. 15(g), (h) and (i)]. Again, these 
chains have no linkage, corner linkage and edge 
linkage, respectively, between adjacent octahedra 
and are the three simplest possible chains of  
[M(Tdp4)2q~n] stoichiometry. The parallel behavior of 
the [M(T~b4)~b,,] and [M(T~b4)2~b,,] chain structures is 
striking, to say the least. The more complex chains of  
Figs. 15(d), (e) and (1) are found in a smaller number 
of  (far less common) minerals. In addition, it seems 
that the more complex structural units tend to occur 
in the ferric-iron sulphates. 

There are far fewer chain-structures in the 
[Mx(T~P3)yq~z] minerals (Table 5) and it should be 
noted that the stoichiometry of  these structures is 
less constrained than for the [M(Tfba)q~n] and 
[M(T~ba)2~b,] groups. Nevertheless, a similar type of  
pattern is seen among the simpler structural units. 

There is one chain [Fig.15(/)] with no linkage 
between octahedra, two chains [Figs. 15(m) and (n)] 
with corner linkage between octahedra and one chain 
[Fig. 15(o)] with edge linkage between octahedra, 
plus one more complex chain [Fig. 15(p)]. Thus, 
again, the same pattern seems apparent, despite the 
fact that the corner-linking octahedral chains have 
the added complication that the (carbonate) triangle 
shares an edge with the octahedron. 

Infinite-sheet structures 

Minerals of  this class are given in Table 6. As the 
degree of  polymerization of  the structural unit 
increases, the number of  possible bond connectivities 
becomes enormous. However, nature still seems to 
favor only a fairly small number of  them; these are 
illustrated in Figs. 16 and 17. 

There is far more variety in the sheet structures of  
the M(T~ba)~bn minerals. Notable in the less- 
connected structural units is that of  minyulite [Fig. 
16(b)], which is built by condensation (via corner 
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linkage between octahedra and tetrahedra) of 
[M2(T~4)2~7 ] clusters (Kampf, 1977) that are the 
structural unit in morinite [Fig. 13(c)]. The structures 
of laueite, stewartite, pseudolaueite, strunzite and 
metavauxite groups [Figs. 16(c)-00] are based on 
sheets formed from condensation of the vertex- 
sharing octahedral-tetrahedral chains of the sort 
shown in Figs. 15(b) and (h). The tetrahedra cross- 
link the chains into sheets and there is much possible 
variation in this type of linkage; for more details on 
this isomerism, see Moore (1975). The five structural 
groups of these minerals are based on the four sheets 
of Figs. 16(c)--(/). These sheets are linked through 
insular divalent metal octahedra, either by direct 
corner-linkage to phosphate tetrahedra plus hydro- 
gen bonding or by hydrogen bonding alone. There is 
great potential for stereoisomerism in the ligand 
arrangement of these linking octahedra, but only the 
trans-corner linkages occur in these groups. In the 
whitmoreite sheet (Moore, Kampf & Irving, 1974) 
[Fig. 16(g)], we can see both the [M2(T~b4)2~b7] cluster 
of the morinite structure and the [M2(Td~4)2d~8] clus- 
ter of the rozenite group structures [Figs. 13(c) and 
(b)]. Similarly, in the [M(T,;b4),;b] sheet of the 
bermanite (Kampf & Moore, 1976) and tsumcorite 
(Tillmanns & Gebert, 1973) structures [Fig. 16(h)], 
we can see the [M(T~b4)~2 ] chain that is the struc- 

tural unit in the minerals of the linarite group [Fig. 
15(e)]. 

The sheet units found in the M(Td~4)2qb~ and 
Mx(T~)3)y~) n minerals are shown in Fig. 17. Again we 
see this structural building process, whereby struc- 
tural units of more primitive connectivities act as 
fundamental building blocks for the more condensed 
structural units of corresponding composition. Thus, 
the [M(T~b4)2~b2] sheet in rhomboclase (Mereiter, 
1974) [Fig. 17(a)] is constructed from the cis- 
[M(T~4)2~4] cluster that is the structural unit of 
roemerite [Fig. 13(d)]. Similarly, the [M(T~4)2~2 ] 
sheet of olmsteadite (Moore, Araki, Kampf & Steele, 
1976) [Fig. 17(b)] is based on the trans-[M(Tq~a)2~P4] 
cluster [Fig. 13(e)] found in anapaite, bloedite, leo- 
nite and schertelite [Figs. 14(c)--0¢)]. Note that the 
rhomboclase and olmsteadite sheets are actually geo- 
metrical isomers (Hawthorne, 1983). Analogous rela- 
tionships are obvious for the [M(Td~4)2] 
merwinite-type sheet and the [M(T2d~)d~2] 
bafertisite-type sheet [Figs. 17(c) and (d)]. Both are 
based on the [M(T~4)2~b2] krohnkite chain of Fig. 
15(g), but in each sheet, the chains are cross-linked in 
a different fashion. In the merwinite sheet (Moore & 
Araki, 1972), tetrahedra from one chain share cor- 
ners with octahedra of adjacent chains and neigh- 
boring tetrahedra point in opposite directions 

(a) (b) (a) (b) 

;~~ 

(d) (e) (f) (d) (e) 

(g) (h) 
Fig. 16. Selected infinite sheets in [M(Td~4)~b,] structures: (a) the 

[M(T{b4)~b3] sheet in newberyite; (b) the [M2(T~b4)2d~5] sheet in 
minyulite; (c) the [M(T&4)~b2] sheet in the laueite-group min- 
erals; (d) the [M(T~4)~2] sheet in pseudolaueite; (e) the 
[M(T~b4)~b2] sheet in stewartite; (f) the [M(T~b4)d~2] sheet in 
metavauxite; (g) the [M2(Td~4)2~bT] sheet in whitmoreite; (h) the 
[M(Td~a)&] sheet in tsumcorite and bermanite. 

(g) 

(c) 

(0 

(h) 
Fig. 17. Selected infinite sheets in [M(T~b4)2~b,,] and [M~(T&3),.d~n] 

structures: (a) the [M(Td~4)2d~2] sheet in rhomboclase; (b) the 
[M(T~4)2~2] sheet in olmsteadite; (c) the [M(Td~4)2] sheet in the 
merwinite-group minerals and yavapaite; (d) the [M(T2~bT)d~2] 
sheet in bafertisite; (e) the [M(T~3)2] sheet in the eitelite-group 
minerals; (f) the [M(T~b3)~b2] sheet in tunisite; (g) the 
[M2(Td~3)~b4] sheet in rodalquilarite; (h) the [M(T2d~5),_] sheet in 
denningite. 
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relative to the plane of the sheet. In the bafertisite 
sheet (Ya-Hsien, Simonov & Belov, 1963), the 
[M(T~b4)2~b2] chains link by sharing corners between 
tetrahedra. Thus, both sheets are 'built' from the 
same more primitive structural unit and these two 
sheets are in fact graphical isomers (Hawthorne, 
1983). 

Framework structures 

Selected minerals of this class are listed in Table 7. 
Unfortunately, the topological aspects of the 
framework structures cannot be easily summarized in 
a concise graphical fashion, partly because of their 
large number and partly because of the complexity 
that results from polymerization in all three spatial 
dimensions. Consequently, we will consider just a 
few examples that show particularly clearly the dif- 
ferent types of linkages that can occur. 

The structure of bonattite (Zahrobsky & Baur, 
1968) is shown in Fig. 18(a). Bonattite is quite 
hydrated (Table 7) and comparison with the minerals 
of Table 6 suggests that it should be a sheet structure 
(c.f. newberyite, Table 6). Prominent in the structure 
are the [M(Tt~4)~b4] chains [Fig. 14(a)] that also 
occur as fragments of the newberyite sheet [Fig 
16(a)]. In bonattite, adjacent chains are skew and 
link to form a framework; in newberyite (Sutor, 
1967), the chains are parallel, and with the same 
number of inter-chain linkages, they link to form 
sheets rather than a framework. Thus, bonattite and 
newberyite are graphical isomers and provide a good 
illustration of how different modes of linking the 
same fundamental building block can lead to struc- 
tures of very different connectivities and properties. 

The structure of titanite is shown in Fig. 18(b); this 
basic arrangement is found in a considerable number 
of minerals (Table 7) of widely differing chemistry 
(Hawthorne, Groat, Raudsepp & Ercit, 1987). The 
[M(T~b4)t~] framework can be constructed from 
[M(T~ba)~b] vertex-sharing chains of the sort found 
in butlerite (Fanfani, Nunzi & Zanazzi, 1971), 
parabutlerite (Borene, 1970), the childrenite group 

. . . .  b - - -  : . . . . .  b - - - -  

(a) (b) (c) 
Fig. 18. Selected framework structures in [M(T~b4)~bn] and 

[M(T~b4)2&n] minerals: (a) the [M(T&4)~b3] framework structure 
of  bonattite; (b) the [M'(T&4)~] framework structure of  titanite; 
(c) the [M(T~b4)~b ] framework structure of  descloizite. 

Table 7. M(T~b4)~b n minerals based on infinite 
frameworks of  Mflp4 octahedra, T~/) 4 tetrahedra and 

T4)3 triangles 

M(T~b4)~b, Space 
mineral Formula group Fig. 

Bonattite [Cu(SO4)(H20)3] Cc ! 8a 
Amblygonite Li[AI(PO4)F] CT 18b 
Montebrasite Li[AI(PO4)OH] CI 18b 
Tavorite Li[Fe 3 ÷ (PO4)OH] C/ 18b 
Arsendescloizite Pb[Zn(AsO4)OH] Priam 18c 
Calciovolborthite Ca[Cu(VO4)OH] Pnam 18c 
Cechite Pb[Fe 2. (VO4)OH] Pnam 18c 
Descloizite Pb[Zn(VO4)OH] Pnam 18c 
Mottramite Pb[Cu(VO,)OH] Pnam 18c 
Pyrobelonite Pb[Mn(VO,)OH] Pnam 18c 
Durangite Na[AI(AsO,)F] Cc 18b 
Isokite Ca[Mg(PO4)F] C2/c ! 8b 
Lacroixite Na[AI(PO,)F] C2/c 18b 
Malayaite Ca[Sn 4 + (SiO4)O] C2/c 18b 
Panasquereite Ca[Mg(PO4)OH] C2/c 18b 
Tilasite Ca[Mg(AsO4)F] Cc 18b 
Titanite-P2~/c Ca[Ti(SiO4)O] P2~/c 18b 
Titanite-C2/c Ca[(Ti.AI.Fe)(SiO4)O] C2/c i 8b 
Dwornikite [Ni(SO4)(H20)] C2/c 18b 
Gunningite [Zn(SO,((H20)] C2/c 18b 
Kieserite [Mg(SO,)(H20)] C2/c i 8b 
Poitevinite [Cu(SO,)(H:O)] C2/c 18b 
Szmikite [Mn 2" (SO,)(H20)] C2/c 18b 
Szomolnokite [Fe ~ * (SO,)(H20)] C2/c ! 8b 

(Giuseppetti & Tadini, 1984) and uklonskovite 
(Sabelli, 1985b) [Table 5, Fig. 15(b)]. The chains pack 
in a C-centered array and cross-link by sharing 
corners between octahedra and tetrahedra of adja- 
cent chains. It is notable that this chain is also a 
fundamental building block of the sheets [Figs. 
16(c)--~] in the laueite, stewartite, pseudolaueite, 
strunzite and metavauxite groups (Table 6). 

Tile structure of descloizite (Hawthorne & Fag- 
giani, 1979) is shown in Fig. 18(c); again this is a 
popular structural arrangement (Table 7). Prominent 
features of the tetrahedral-octahedral framework are 
the edge-sharing chains of octahedra flanked by stag- 
gered tetrahedra that link along the chain. This 
[M(T~b4)~b] chain is found in the structures of the 
linarite-group minerals [Fig. 14(c)] and is also a 
fundamental building block for the [M(Tt~a)t~] sheet 
[Fig. 15(e)] that is the structural unit in tsumcorite 
and bermanite (Table 6). 

These three examples show the type of structural 
variability we find in the framework structures and 
also the small number of polyhedral linkage patterns 
(fundamental building blocks) that occur and seem 
common to a wide range of structural types. This 
suggests that these patterns of bond connectivity are 
very stable and hence tend to persist from one 
structure type to another. In addition, the incorpor- 
ation of relatively primitive fragments into more 
highly condensed structural units tends to support 
the conceptual approach of considering a large struc- 
ture both topologically and energetically as an 
assemblage of smaller structural fragments. 
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(OH) and (H20) in oxysalt structures 

One thing that emerges from the above discussion of 
structural hierarchy is the importance of hydrogen• It 
is not just in organic and biological structures that 
hydrogen is important. Because of its unusual stereo- 
chemical propensities, it has a unique role in con- 
trolling or moderating many aspects of structure and 
properties in inorganic crystals. 

The hydrogen cation H + commonly has a coordi- 
nation number of 2 in inorganic structures; higher 
coordination numbers are not rare, but for simplicity 
we will consider the former, as the arguments pre- 
sented here can easily be generalized to higher 
coordination numbers. There is usually a spon- 
taneous distortion, with the hydrogen ion moving 
off-center towards one of the two coordinating 
anions. The geometry of this arrangement has been 
well-characterized by neutron diffraction (Ferraris & 
Franchini-Angela, 1972); the typical arrangement is 
shown in Fig. 18. Brown (1976) has shown that the 
most common bond-valence distribution is about 
0.80 v.u. to the closer O atom and approximately 
0.20 v.u. to the further O atom. This generally leads 
to the stronger bond being included in (H20) ~ or 
(OH)- groups that now become complex anions; the 
longer (weaker) bond is referred to as a hydrogen 
bond. The O atom closest to the H atom is called the 
(hydrogen-bond) donor and the O atom further from 
the H atom is called the (hydrogen-bond) acceptor 
(Fig. 18). 

There are six distinct hydrogen-bearing groups in 
inorganic structures: (OH)-,  ( H 2 0 )  °, ( H 3 0 )  +, 
(H302)-, (H502) + and (NH4)+; sketches of typical 
bond-valence distributions for these groups in min- 
erals are shown in Fig. 20. The positively charged 
groups act as cations and both (H30) ÷ and (H502) + 
are uncommon; typical examples are {H30}[Fe~ + 
(504)(0H)6 ] (Ripmeester, Ratcliffe, Dutrizac & 
Jambor, 1986) and {HsO2}[Fe 3 +(804)2(H20)2 ] 
(Mereiter, 1974)• On the other hand, the (OH)- and 
(H/O) ° groups play a very important role in oxysalt 
structures, particularly with regard to the topological 
properties of their bond networks. The reason for 
this stems from the extremely polar nature of these 

two groups. On the oxygen side of each group, they 
function as an anion, whereas on the hydrogen side 
of each group, they function as a cation (Fig. 19); it 
is because of this unusual property that they play 
such a unique role in controlling the structure and 
chemistry of oxysalts. 

Other large H..-O groupings have been noted [e.g. 
(H703)  + in (H703)[C6H3C12803]  and (H1406) 2+ in 
HSbCI6.3H20 (Emsley, Jones & Lucas, 1981)]. How- 
ever, these larger groups can be considered as smaller 
tightly bonded (i.e. D--H groups) groups linked by 
much weaker H---A bonds and thus I do not consider 
them as integral units; they are intermediate between 
the integral units noted above [i.e. O H - ,  (H20) °, 
( H 3 0 )  + and (H502)-] and clathrate structures. 

(OH) and (H20) as components of the structural unit 

The polar character of these two groups (Fig. 20) 
allows them to control the character of the structural 
unit. On the Lewis-base side of each group, the bond 
valence is relatively strong, approximately 1.2 v.u. 
for (OH) and 0.4 v.u. for (H20); the remainder of the 
bond-valence requirements of the central O atom is 
satisfied by the H atom(s). On the Lewis-acid side of 
the group, the bond valence is relatively weak, about 
0.2 v.u. for each group (Fig. 20). Thus, on the Lewis- 
base (or anionic) side of the group, the strong bond 
constitutes part of the bonding network of the struc- 
tural unit; conversely, on the Lewis-acid (or cationic) 
side of the group, the hydrogen bond is too weak to 
form part of the bonding network of the structural 
unit. Hence, the role of  both (OH) and (H20) is to 
prevent the polymerization of  the structural unit in 
specific directions• Consequently, these groups play a 
crucial role in controlling the class of polymerization 
of the structural unit (Hawthorne, 1992)• 

o.2i !o2 o.2! ::o.~ o.~! 

OH H20 10.67 
H~o ~ (c) 

(a) (b) ;o.33 
T 

O cceptor  

f anion 
I "  donor ( ~ ) - - ~ 0 "  f • ..-" 0 . 2  

anion 

Fig. 19. Typical geometry of hydrogen coordination: the hydrogen 
is two-coordinate and spontaneously moves off-center to form 
two bonds of the approximate valence shown, and a bent 
O ~ H - - O  angle; the anion closer to the H atom is called the 
'donor' anion and the anion furthest from the H atom is called 
the 'acceptor' anion. 

'~.o.25 /0.25 

azs "e°?--s. ~. o2s . . . .  o2s 

(d) ~ '~ (e) 
Fig. 20. Typical bond-valence distributions for the hydrogen- 

bearing groups found in the minerals: (a) (OH)- • (b) (H20)°; (c) 
(H30)' • (d) (H502)* " (e) (NH4)*. 
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Table 8. Bond-valence table for newberyite 

Mg P H(6) H(71) H(72) H(81) H(82) H(91) 

0(3) 0.389 1.399 
O(4) 0.349 1.242 0.20 0.20 
0(5) 0.364 1.232 0.20 0.20 
0(6) 1.095 0.80 0.20 
0(7) 0.326 0.80 0.80 
0(8) 0.316 0.80 0.80 
0(9) 0.313 

Sum 2.057 4.968 1.0 1.0 1.0 1.0 1.0 

0.20 
0.20 

0.80 0.80 

1.0 1.0 

H(92) Sum 

1.788 
1.891 
1.996 
2.095 
2.126 
2.116 
1.913 

Newberyite (Sutor, 1967), [Mg(PO3OH)(H20)3], 
illustrates this feature very well. The structural unit is 
a sheet of corner-sharing (MgO6) octahedra and 
(PO4)  tetrahedra, with the polyhedra arranged at the 
vertices of a 63 net [Fig. 16(a)]; the bond-valence 
structure is shown in Table 8. In the (PO4)  tetrahe- 
dra, three of the ligands link to (MgO6) octahedra 
within the sheet. The other ligand is 'tied off' orthog- 
onal to the sheet by the fact that the O atom is 
strongly bonded to a H atom (i.e. it is an hydroxyl 
group). The long P- -O bond of 1.59 A contributes a 
bond valence of 1.10v.u. to the O atom and the 
remaining 0.90 v.u. is contributed by the H atom, 
which then weakly hydrogen bonds (bond valence of 
about 0.10 v.u.) to the neighboring sheet in the y 
direction. In the (MgO6) octahedra, three of the 
ligands link t o  (PO4)  tetrahedra within the sheets. 
The other ligands are 'tied off' by the fact that they 
are (H20) groups; the Mg---O bonds of 2.11, 2.12 
and 2.13 A contribute a bond valence of approxi- 
mately 0.32 v.u. to each O atom and the remaining 
1.68 v.u. is contributed by the two H atoms which 
then weakly hydrogen bond ( ~  0.16 v.u. for each 
bond) to the neighboring sheets in the y direction. 
The chemical formula of the structural unit is also 
the chemical formula of the mineral and the sheet- 
like nature of the structural unit is controlled by the 
number and distribution of H atoms in the structure. 

In newberyite, all intra-unit linkage stops at the 
(OH) and (H20) groups. This is not necessarily the 
case; both (OH) and (H20) can allow intra-unit 
linkage in some directions and prevent it in others. A 
good example of this is artinite, [Mg2(CO3)- 
(OH)2(H20)3] [(Akao & Iwai, 1977), Fig. 21 and 
Table 9]. The structural unit is a ribbon (chain) of 
edge-sharing (MgO6) octahedra, flanked by (CO3) 
triangles linked to alternate outer octahedral vertices 
of the ribbon in a staggered arrangement on either 
side of the ribbon. The anions down the centre of the 
ribbon are bonded to three Mg cations; they receive 
about 0.36 × 3 = 1.08 v.u. from the Mg cations and 
thus receive 0.92 v.u. from their associated H atoms, 
which then weakly hydrogen bond (bond valence 
approximately 0.08 v.u.) to an adjacent ribbon. The 
(OH) group thus allows linkage in the x and y 

Table 9. Bond-valence table for art&ite 

Mg C H(1) H(2) H(3) H(4) Sum 
O(1)* 0.391 0.08 0.80 × 2~  2.071 
O(1')* 0.391 1.678 0.08 2.149 
0(2) !.264 x 2~ 0.30 0.30 1.864 
OH 0.372 × 2---) 0.92 2.014 

0.350 
0W 0.283 × 2~,---, 0.70 0.70 !.966 

2.051 4.206 1.00 1.00 1.00 !.00 

*O(1) and O(1') are disordered and are both half-occupied. 

directions, but prevents linkage in the z direction. 
The anions bonded to Mg along the edge of the 
ribbon are bonded to either one Mg, two Mg or one 
Mg and one C, with incident bond-valence contri- 
butions of 0.3, 0.6, and 1.7 v.u., respectively. The 
former two ligands must be (H20) groups which 
hydrogen bond fairly strongly to anions in the same 
and in adjacent structural units. Thus, the (H20) 
group bonded to one Mg prevents further unit 
polymerization in all three directions, whereas the 
(H20) group bonded to two Mg atoms allows 
polymerization in the y direction but prevents 
polymerization in the other two directions. The 
bond-valence requirements of the two anions bonded 
only to C are satisfied by hydrogen bonding involv- 
ing donor atoms both in the same structural unit and 
in different structural units. Thus, in artinite, all 
linkage between structural units is through hydrogen 

• H20 • OH 

Fig. 21. The structural unit in artinite, a ribbon of (Mg~b6) 
octahedra and (CO3) triangles; all simple anions not bonded to 
carbon are either (OH) or (H20). 
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bonding via (OH) and (H20) groups of the structural 
units. In addition, the (OH) groups allow poly- 
merization in two directions within the structural 
unit, whereas the two types of (H20) groups allow 
polymerization in one and no directions, respec- 
tively, within the structural unit. 

Hydroxyl and (H~O) groups play an important 
role in the polymerization of the structural unit in 
oxysalt structures. Because of its very asymmetric 
distribution of bond valences, the H atom can link to 
any strongly bonded unit, essentially preventing any 
further polymerization in that direction. Thus, the 
dimensionality of  the structural unit is controlled pri- 
marily by the amount and role of  hydrogen in the 
structure. 

(H20) groups bonded to interstitial cations 

By definition (Lima de Faria, Hellner, Liebau, 
Makovicky & Parth6, 1990), interstitial cations are 
usually large and of low charge; they are usually 
alkali or alkaline-earth cations with Lewis acidities 
significantly less than the cations belonging to the 
structural unit. Consequently, (H20) can function as 
a ligand for these cations, whereas (OH) usually 
cannot, as the cation to which it must bond cannot 
contribute enough bond valence (i.e. about 1.0 v.u.) 
for its bond-valence requirements to be satisfied. 
There are (at least) three possible reasons for (H20) 
groups to act as ligands for interstitial cations: 

(a) to satisfy the bond-valence requirements 
around the interstitial cation in cases where there are 
insufficient anions available from adjacent structural 
units; 

(b) to carry the bond-valence from the interstitial 
cation to a distant unsatisfied anion of an adjacent 
structural unit; 

(c) to act as a bond-valence transformer between 
the interstitial cation and the anions of the structural 

 !i!i ill y 

b ~--: 
Fig. 22. The crystal structure of stringhamite projected on to 

(001); interstitial species are omitted on the left of  the figure to 
emphasize the sheet-like nature of the structural unit. 

unit; this is a mechanism of particular importance 
and will be discussed later. 

An example of (H20) of this type occurs in 
stringhamite (Hawthorne, 1985b) [CaCu(SiO4)](H20) 
(Fig. 22). The structural unit is a sheet of corner- 
sharing (SiO4) tetrahedra and square-planar (CuO4) 
polyhedra, arranged parallel to (010). These sheets 
are linked together by interstitial Ca atoms; each Ca 
links to four anions from one sheet and one anion 
from the adjacent sheet. Presumably, the Ca coordi- 
nation number 5, a value which is rare for Ca, is not 
adequate with regard to the satisfaction of local 
bond-valence requirements, and two (H20) groups 
complete the Ca coordination polyhedron. Each 
(H20) group bonds to two Ca atoms (Fig. 22) and 
also hydrogen bonds to anions in adjacent sheets, 
carrying the Ca bond valence to anions which other- 
wise it could not reach. Thus, the (H20) groups of 
this type (i.e. bonded only to interstitial cations) play 
a very different role from those (H20) groups that 
form part of the structural unit. 

Hydrogen-bonded interstitial (H20) groups 

There are many structures in which interstitial 
(H20) groups are not bonded to any interstitial 
cations and yet occupy well defined positions within 
a structure and participate in a hydrogen-bonding 
network. The (H20) groups of this sort act as both 
hydrogen-bond donors and hydrogen-bond 
acceptors. Any hydrogen-containing group [both 
(OH) and (H20) of the structural unit, interstitial 
( H 2 0 )  bonded to interstitial cations and interstitial 
(H20) groups not bonded to the structural unit or 
interstitial cations] can act as a hydrogen-bond 
donor to (H20) groups of this sort, and any anion or 
(H20) group can act as a hydrogen-bond acceptor 

I 
I,,11 d' lP,] 

Fig. 23. The crystal structure of mandarinoite projected on to 
(001); note the two different types of (H20) groups, one bonded 
to cations of the structural unit and the other held in the 
structure by hydrogen-bonding only. 
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for such (H20) groups. Crystals with such hydrogen- 
bonding networks can be thought of as intermediate 
between anhydrous structures and clathrate struc- 
tures. The clathrate-like fragments that constitute 
these hydrogen-bonded networks have been desig- 
nated as large examples of H - - O  groups (Emsley, 
Jones & Lucas, 1981). However, for the reasons cited 
above, I consider them not as single groups but as 
part of the interstitial structure. 

The structure of mandarinoite, [Fea+(SeO3)3 - 
(nEO)a](n20)3, shows such interstitial (n20) groups 
(Hawthorne, 1984b). The structural unit is a hetero- 
polyhedral framework of corner-linked (SeO3) tri- 
angular pyramids and (FeO6) octahedra, with large 
cavities that are occupied by hydrogen-bonded 
(n20) groups in well defined positions (Fig. 23). 
Thus, of the six (H20) groups in the formula unit, 
three are bonded to Fe 3+ and are part of the struc- 
tural unit; the three remaining (H20) groups are 
interstitial and not bonded to any cation at all, but 
are held in place solely by a network of hydrogen 
bonds. 

Occluded (H20) groups 

Occluded (H20) groups are not bonded to any 
cation and are not associated with any hydrogen- 
bonding scheme; normally, such (H20) groups are 
located in holes within or between structural units. 
Such groups can occupy well defined crystallographic 
positions, but their linkage with the rest of the 
structure is solely through van der Waals' inter- 
action. 

Alkali-free beryl can have nonbonded (H20) 
groups occurring in the channels of the framework 
structure (Gibbs, Breck & Meagher, 1968). Most 
beryl contains alkali cations partly occupying sites 
within the channels and these cations are bonded to 
channel (H20) groups. However, Hawthorne & 
Cerny (1977) have shown that most beryl contains 
(H20) groups in excess of that required to coordinate 
the channel cations, and hence some of the (H20) 
groups must be occluded rather than occurring as 
bonded components of the structure. Although such 
(H20) does not play a significant structural role, it 
can have important effects on such physical proper- 
ties as specific gravity, refractive indices (Cerny & 
Hawthorne, 1976) and dielectric behavior (Shannon, 
Subramanian, Mariano, Gier & Rossman, 1992). 

Structure and chemical predictions 

Thus far, we have been dealing with an a posteriori 
analysis: consideration of bond-valence theory as an 
MO theory, development of an hierarchical ordering 
of oxysalt structures, analysis of the various roles of 
hydrogen in oxysalt crystals. However, what we 

really need to do is to develop some kind of predic- 
tive capability for aspects of structure and chemistry 
that have so far resisted our efforts. Bond-valence 
theory has a major role to play in this regard as it 
has predictive capability; we can use the Lewis acid 
and base values, together with the valence-matching 
principle, to examine possible chemical interactions 
without requiring detailed structural information. By 
using this approach, we can begin to examine several 
aspects of structure and chemistry that have hitherto 
resisted our efforts. 

Binary structural representation 

One of the problems in dealing with inorganic 
structures is the complexity of the atom interactions; 
there are a large number of them and their spatial 
characteristics are important. However, the same 
situation applies to an atom: there is a nucleus and 
numerous electrons, all interacting in a very complex 
manner; nevertheless, we can still usefully consider 
an atom as a single unit with simple properties such 
as size, charge and electronegativity. Why not take 
the same approach to the structural unit - consider it 
as a very complex oxyanion with intrinsic charac- 
teristic properties? When this is done (e.g. Haw- 
thorne, 1985a, 1986, 1990), we can define a Lewis 
basicity for the structural unit in exactly the same 
manner as for a more conventional oxyanion. 

Next, let us consider the interstitital components. 
These may be cations (e.g. alkalis or alkaline earths) 
and (H20) groups. As discussed above, (H20) groups 
may bond to interstitial cations; we may consider 
these as complex cations (e.g. [Ca(H20)7] 2+ groups), 
which then have properties (e.g. Lewis acidities) very 
different from their constituent simple cations. The 
interstitial components of a structure can usually be 
considered in a simple additive fashion to produce an 
aggregate set of properties (e.g. charge, Lewis 
acidity). 

We have essentially factored the structure into two 
components and this enables us to use the valence- 
matching principle to examine the interaction of the 
structural unit with the interstitial species. It is worth 
emphasizing here that we have developed a binary 
representation that gives us a simple quantitative 
model of even the most complicated structure and 
allows us quantitative insight into the weak bonding 
between interstitial species and the structural unit. 

This may be illustrated with goedkenite (Moore, 
Irving & Kampf, 1975), SrE[AI(PO4)2(OH)], the bond 
network of which is shown in Fig. 24. There are nine 
O atoms in this fragment (as indicated by the general 
[M(T~b4)E~b] form of the structural unit) and the 
residual anionic charge is 4- .  In order to calculate 
the basicity of this structural unit, we must assign the 
simple anion coordination numbers to the unit. 
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Obviously, there must be an objective process for 
doing this, as the calculation of structural unit 
basicity hinges on this assignment. Fortunately, this 
assignment is fairly well constrained by the general 
observation that most oxysalts of interest have O in 
three- or four-coordination; of course, it is easy to 
think of exceptions, quartz (SiO2) for example, but 
the fact that these exceptions are few 'proves the 
rule'. Normally, it is adequate to use the coordina- 
tion number 4; however, there are the following 
exceptions: (i) compounds with M = 3 + and T =  6 +, 
for which the coordination number 3 is more appro- 
priate; (ii) a coordination number of 3 (incuding H 
atoms) is more appropriate for (H20), and is also 
used for (OH) when it is bonded to M 3 + cations. To 
attain an O coordination number of 4, the cluster 
shown in Fig. 24 needs an additional number of 
bonds from the interstitial cations. From the connec- 
tivity of the structural unit, the cluster of Fig. 24 
needs an additional 20 bonds; however, it will receive 
one (hydrogen) bond from an adjacent chain, which 
leaves 19 bonds to be received from the interstitial 
cations. These 19 bonds must come from 4 ÷ charges 
and thus the average bond valence required by the 
cluster is 4/19 = 0.22 v.u.; this is the basicity of the 
structural unit in goedkenite. Examination of the 
table of Lewis acid strengths (Table 1) shows that the 
cations of appropriate Lewis acidity are Pb 
(0.20v.u.), Sr (0.24v.u.) and Ba (0.20v.u.); in 
agreement with this, Sr is the interstitial cation in 
goedkenite. 

(H20) as a bond-valence transformer 

Let a cation, M, bond to an anion X [Fig. 25(a)]; 
the anion X receives a bond valence of v valence 

~ 7 .:.:.:' ~ ::.::: • ~. .: 

,,._ .,Z7 ¢'- L',, : ffd. , "  ;." '. ' ~  

(a) 

9 

(b) 

Fig. 24. The bond network in the structural unit of  goedkenite. 

units from the cation M. Consider a cation, M, that 
bonds to an (H20) group, which in turn bonds to an 
anion X" [Fig. 25(b)]. In the second case, the O 
receives a bond-valence of v valence units from the 
cation M and its bond-valence requirements are 
satisfied by two short O---H bonds of valence 
( 1 -  v/2) v.u. To satisfy the bond-valence require- 
ments around each H atom, each H forms at 
least one hydrogen bond with its neighboring anions. 
In Fig. 25(b), one of these hydrogen bonds is to the 
X anion, which thus receives a bond valence of one 
half what it received when it was bonded directly to 
the M cation. Thus, the (H20) group acts as a 
bond-valence transformer, causing one bond (bond 
valence = v v.u.) to be split into two weaker bonds 
(bond valence = v/2 v.u.). It is this transformer effect 
that is the key to understanding the role of  interstitial 
(H20) in crystals. 

Interstitial (H20) 

Interstitial (H20) may coordinate interstitial 
cations or it may occur solely as a component of a 
hydrogen-bonded network. Whichever is the case, 
the (H20) occupies fixed atomic positions and must 
play a role in the stability of the structure. The key 
to understanding this role is found in two distinct 
ideas of bond-valence theory: 

(a) (H20) as a bond-valence transformer and 
(b) application of the valence-matching principle 

to the interaction between the structural unit and the 
interstitial cations. 

Ideally, the valence of the bonds from the intersti- 
tial cations to the structural unit must match the 

Mo v _Q 

(a) 

MO 

(b) 

,'~ ,~ xO . . . . . .  

Fig. 25. The transformer effect of (H20) groups: (a) a cation M 
bonds to an oxygen X with bond valence v; (b) a cation M 
bonds to an oxygen X of an (H20) group, and the strong bond 
is split into two weaker bonds (hydrogen bonds) via the bond- 
valence requirements of the constituent H ÷ and 02- ions; • = 
H atom. 
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Lewis basicity of that structural unit; if they do not 
match, then there cannot be a stable interaction and 
that particular structural arrangement will not occur. 
However, if the Lewis acidity of the interstitial cation 
is too large, the cation may bond to an interstitial 
(H20) group, which acts as a bond-valence trans- 
former, taking the strong bond and transforming it 
into two weaker bonds (Fig. 25). In this way, 
incorporation of  interstitial ( H 2 0 )  into the structure 
can moderate the Lewis acidity of  the interstitial 
cations such that the valence-matching principle is 
satisfied. 

Consider the hydroxy-hydrated ferric-iron sul- 
phate mineral botryogen (Sfisse, 1968), 
Mg2[Fe 3+(SO4)4(OH)z(H20)z](H20)lo; why does this 
mineral have 10 interstitial (HzO) groups per struc- 
tural formula? The coordinations of the various 
anions in the structural unit are shown in Table 10. 
Using the ideal coordination numbers discussed earl- 
ier (=  3 for all the simple anions in botryogen), the 
structural unit needs an additional 26 bonds to 
achieve ideal coordination of all its simple anions. 
Six of these bonds will be hydrogen bonds from 
(OH) and (H20) groups within the structural unit or 
in adjacent structural units, leaving 20 bonds needed 
from interstitial cations. Thus, the Lewis basicity of 
the structural unit in botryogen is the charge divided 
by the number of required bonds: 4/20 = 0.20 v.u. 
The interstitial cations in botryogen are Mg, with a 
Lewis acidity of 0.36 v.u. The valence-matching prin- 
ciple is violated and a stable structure should not 
form. However, the interstitial Mg atoms are coordi- 
nated by {5(H20)+ O}, and this will moderate the 
effective Lewis acidity of the cation via the trans- 
former effect of (H20). The effective Lewis acidity of 
the 'complex cation' {Mg(H20)50} is the charge 
divided by the number of bonds: 

2/(5 × 2 +  1) =0.19 v.u. The moderated Lewis 
acidity of the complex interstitial cation matches the 
Lewis basicity of the structural unit and a stable 
structure is formed. 

Bond-valence controls on interstitial cations 

Apart from the requirement of electroneutrality, 
the factors that govern the identity of the interstitial 
cations are obscure. In synthetic crystals, this point is 
less obvious than in minerals. When synthesizing 
crystals, we select the chemical systems used, thereby 
excluding other components from the crystal. This is 
not the case for minerals. Here, the chemical system 
is often extremely large and the crystallizing struc- 
ture has access to a large variety of possible consti- 
tuents. However, inspection of mineral compositions 
from a wide variety of chemical environments and 
geographical locations shows that a specific structure 
type can have extreme selectivity in the incorporation 

Table 10. Details of  HzO 'of hydration' & botryogen 

B o t r y o g e n :  M g 2 [ F e z  3 ÷ ( S O 4 ) 4 ( O H ) 2 ( H 2 0 ) 2 ] ( H 2 O h o  

B o n d e d  N u m b e r  o f  I d e a l  B o n d s  n e e d e d  f o r  

a t o m s  a n i o n s  c o o r d i n a t i o n  n o .  i d e a l  c o o r d i n a t i o n  

S 10 3 2 x I0 
S + Fe 3 ÷ 6 3 1 x 6 
2Fe  3 + + H 2 3 0 
Fe 3 * + 2H 2 3 0 

Bonds  needed to s t ruc tu ra l  un i t  = 2 x 10 + 1 x 6 = 26. 
No.  o f  hyd rogen  b o n d s  to s t ruc tura l  uni t  = 2 x 2 + 2 x l = 6. 
No.  o f  add i t i ona l  b o n d s  needed  = 26 - 6 = 20. 
Cha rge  on  s t ruc tura l  un i t  = 4 - .  
Lewis basici ty  o f  s t ruc tura l  un i t  = 4/20 = 0.20 v.u. 

In ters t i t ia l  ca t ion(s )  is Mg.  
M g  c o o r d i n a t i o n  = {5H20 + O}. 
Bonds  f rom M g  to s t ruc tu ra l  uni t  = 5 x 2 + 1 = 1 I. 
Effective Lewis acidi ty  o f  M g  = 2/{5 x 2 + 1} = 0.19 v.u. 
The  intersi t i t ia i  (H20)  has  m o d e r a t e d  the  Lewis acidi ty  o f  the inters t i t ia l  

ca t ion  such t h a t  the  va l ence -ma tch ing  pr inc ip le  is satisfied. 

of interstitial cations. Table 11 shows minerals of 
general stoichiometries [M2+(TS+Oa)2(H20)2] and 
[M 2 + (T 5 + O4)2(H20)]. Both contain interstitial 
divalent (3,/2 +) cations and yet the interstitial cations 
seem mutually exclusive between the two groups (it 
should be emphasized that this is not a geochemical 
feature; both sets of cations were often available for 
incorporation into these structures). The analogous 
situation in synthetic materials is the nonisostruc- 
tural nature of analogous isochemical Ca- 
(Sr, Ba,Pb 2 + ) compounds. 

So what makes the nature of the interstitial species 
so sensitive to the character of the structural unit? 
We find the answer to this problem in the application 
of the valence-matching principle to our binary rep- 
resentation of structure. The Lewis acidity of the 
interstitial cation must match with the basicity of the 
structural unit. It is not enough that the interstitial 
cation have the correct valence, it must also have the 
correct Lewis acidity. Let us examine the example 
outlined in the previous paragraph, that is the 
identity of the interstitial cations in the 
[A/z+ (T 5+ 04)2(H20)2] and [h/2+ (T 5+ 04)(H20)] 
structures, using brandtite and brackebuschite as 
examples. 

The situation for brandtite (Hawthorne & Fergu- 
son, 1977) is shown in Table 12; counting the bonds 
within the structural unit indicates that an additional 
18 bonds to the structural unit are needed to attain 
the requisite simple anion coordination numbers. 
Four of these bonds are hydrogen bonds from other 
structural units, leaving 14 bonds to be contributed 
by the interstitial cations. The residual charge on the 
structural unit is 4-  (per [Mn 2+ (AsO4)2(H20)2] unit) 
and hence the basicity of the structural unit is 4/14 = 
0.29 v.u. Inspection of the Lewis acidity table (Table 
1) shows that Ca has a Lewis acidity of 0.29 v.u., in 
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Table 11. Minerals with chain units o f  stoichiometry [M 2 + (T  5 + O4)2(H20)2] and [M 2 + ( T  s + ,6 + O4)2(H20 ,OH)  ] 

[ M  2+ ( T  s ÷ O4)2(H20)2 ] 

Brandtite Ca2[Mn(AsOa)2(H20)2] 
Kr6hnkite* Na2[Cu(SO4)2(H20)2] 
Roselite Ca2[Co(AsO4)2(H20)2] 

Cassidyite Ca2[Ni(PO4)2(H20)2] 
Collinsite Ca2[Mg(PO4)2(H20)2] 
Gaitite Ca2[Zn(AsO,)2(H20)2] 
Roselite-beta Ca2[Co(AsO4)2(H20)2] Fornacite 
Talmessite Ca2[Mg(AsO4)2(H20)2] Molybdofornacite 

Tornebohmite* 

[ M  2 + (TS* .6~ O4)2(H20,OH)]  
Arsenbrackebuschite Pb2[Fe 2' (AsO4)2(H20)] 
Arsentsumebite Pb2[Cu(SO4)(AsO4)(OH)] 
Brackebuschite Pb2[Mn(VO4)2(H20)] 
Gamagarite Ba2[(Fe ~" ,Mn)(VOa)2(OH,H20)] 
Goedkenite Sr2[AI(PO4)2(OH)] 
Tsumebite Pb2[Cu(PO4)(SO4)(OH)] 

Pb2[Cu(AsO,)(CrO,)(OH)] 
Pb2[Cu(AsO,)(MoO,)(OH)] 
t(RE)2[AI(SiO,)2(OH)] 

Fairfieldite Ca2[Mn(PO4)2(H20)2] 
Messelite Ca2[Fe 2 ÷ (PO4)2(H20)2] Vauquelinite Pb2[Cu(PO4)(CrO4)(OH)] 

* T h e  d i f ferent  va lence  ca t ions  in  the s t ruc tu ra l  un i t s  o f  k r 6 h n k i t e  a n d  t o r n e b o h m i t e  force d i f ferent  va lence  in ters t i ta l  ca t ions  for  these 
two minera l s .  

t R E  = rare  ea r th  a toms .  

Table 12. Calculation o f  structural-unit basicity for 
brandtite and brackebuschite 

Brandite = Ca2[Mn 2' (AsO4)2(H20)2] Structural unit = [MntO)(Ast'JO4)2 - 
(HI2120)2 ] 

Number of bonds in structural unit = 1 x [6] + 2 × [4] + 2 x [2] = 18 
Number of bonds needed for four-coordination of all simple anions (except 

H20 for which three-coordination is assigned = 8 x [4] + 2 × [3] = 38 
Number of additional bonds to structural unit to achieve this coordination 

= 20 
Number of hydrogen bonds to structural unit = 2 x 2 = 4 
Therefore, the number of bonds required from interstitial cations = 20 - 4 

=16  
Charge on the structural unit [Mn 2" (AsO4)2(H20)2] in brandtite = 4 
Lewis basicity of structural unit = charge/bonds = 4/16 = 0.25 v.u. 
This basicity matches most closely with the Lewis acidity of Ca at 0.27 v.u. 
Thus, the formula of brandtite is Ca2[Mn(AsOa)2(H20)2] 
Brackebuschite = Pb2[Mn 2' (VO4)2(H20)] Structural unit = [Mnt~(VI4JO4)2 - 

(H12120)] 
Number of bonds in structural unit = l x [6] + 2 x [4] + 2 x [!] = 16 
Number of bonds needed for four-coordination of all simple anions 

(including H20 which is four-coordinated in this structural unit) = 9 x [4] 
= 36 

Number of additional bonds to structural unit to achieve this coordination 
= 20 

Number of hydrogen bonds to structural unit = 2 
Number of bonds required from interstitial cations = 18 
Charge on the structural unit [Mn 2+ (VO4)2(H20)] in brackebuschite = 4 
Lewis basicity of structural unit = charge/bonds = 4/18 = 0.22 v.u. 
This basicity matches most closely with the Lewis acidity of Pb at 0.20 v.u. 
Thus, the formula of brackebuschite is Pb2[Mn(VO,)2(H20)] 

exact agreement with the Lewis basicity of the struc- 
tural unit. Hence, the valence-matching principle is 
satisfied, and Ca2[Mn2+(AsOa)2(H20)2] is a stable 
structure. 

Brackebuschite (Donaldson & Barnes, 1955) is 
also shown in Table 12; an additional 20 bonds are 
needed to satisfy the requisite simple anion coordina- 
tion requirements. Two of these bonds are hydrogen 
bonds from adjacent structural units, leaving 18 
bonds to be satisfied by interstitial cations. The 
residual charge on the structural unit is 4-  and hence 
the basicity of the structural unit is 4/18 = 0.22 v.u. 
This value matches up quite well with the Lewis 
basicity of Pb 2+ (0.20 v.u., see Table 1), the valence- 
matching principle is satisfied and 
Pb 2 + [Mn 2 + (V s + O4)2(H20)] is a stable structure. 

Some very interesting questions now become 
apparent concerning the nature of crystallization. 
Does the form of the structural unit dictate the 
identity of the interstitial cations, or does the availa- 
bility of a particular interstitial cation dictate the 
form of the structural unit? Does the pH of the 
environment affect the form of the structural unit or 
the amount of interstitial (H20) incorporated into 
the structure? Are there synergetic interactions 
between these factors? Using bond-valence theory in 
conjunction with the topological characteristics of 
the structural unit, we can begin to investigate some 
of these questions. 

Summary 
Bond topology has a major effect on the energetics 
of a structure, suggesting that major trends in struc- 
ture stability, properties and behavior should be 
systematically related to the coordination geometry 
and polyhedral linkage of a structure. Combination 
of these ideas with bond-valence theory (a very 
simple form of molecular-orbital theory) allows 
simple binary representation of even the most com- 
plex structure: a (usually anionic) structural unit that 
interacts with (usually cationic or neutral) interstitial 
species to form the complete structure. This interac- 
tion can be quantitatively examined in terms of the 
Lewis basicities and acidities of the binary com- 
ponents; such features as interstitial cation chemistry 
and 'water' of hydration can be explained and quan- 
titative predictions can be made. 

The principal idea behind this work is to develop 
an approach that is reasonably transparent to chemi- 
cal and physical intuition, and that can be applied to 
large numbers of very complex structures. There is a 
need for a simple approach that addresses the more 
global aspects of complex oxysalt structures. These 
ideas tend to be intuitive and semiquantitative, but 
are capable of organizing a large amount of informa- 
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tion into a coherent framework, and also provide a 
basis for thinking about many questions that were 
intractable to previous approaches. 

This work was supported by a Killam Fellowship 
and by the Natural Sciences and Engineering Coun- 
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the author. 
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